These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
733 related articles for article (PubMed ID: 19619889)
1. Effects of willow stands on heavy metal concentrations and top soil properties of infrastructure spoil landfills and dredged sediment-derived sites. Vandecasteele B; Quataert P; Genouw G; Lettens S; Tack FM Sci Total Environ; 2009 Oct; 407(20):5289-97. PubMed ID: 19619889 [TBL] [Abstract][Full Text] [Related]
2. Availability of heavy metals for uptake by Salix viminalis on a moderately contaminated dredged sediment disposal site. Meers E; Lamsal S; Vervaeke P; Hopgood M; Lust N; Tack FM Environ Pollut; 2005 Sep; 137(2):354-64. PubMed ID: 15963374 [TBL] [Abstract][Full Text] [Related]
3. Foliar concentrations of volunteer willows growing on polluted sediment-derived sites versus sites with baseline contamination levels. Vandecasteele B; Quataert P; De Vos B; Tack FM; Muys B J Environ Monit; 2004 Apr; 6(4):313-21. PubMed ID: 15054540 [TBL] [Abstract][Full Text] [Related]
4. The potential of willow for remediation of heavy metal polluted calcareous urban soils. Jensen JK; Holm PE; Nejrup J; Larsen MB; Borggaard OK Environ Pollut; 2009 Mar; 157(3):931-7. PubMed ID: 19062141 [TBL] [Abstract][Full Text] [Related]
5. Differences in Cd and Zn bioaccumulation for the flood-tolerant Salix cinerea rooting in seasonally flooded contaminated sediments. Vandecasteele B; Laing GD; Quataert P; Tack FM Sci Total Environ; 2005 Apr; 341(1-3):251-63. PubMed ID: 15833256 [TBL] [Abstract][Full Text] [Related]
6. Tree species effect on the redistribution of soil metals. Mertens J; Van Nevel L; De Schrijver A; Piesschaert F; Oosterbaan A; Tack FM; Verheyen K Environ Pollut; 2007 Sep; 149(2):173-81. PubMed ID: 17360090 [TBL] [Abstract][Full Text] [Related]
7. Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars. Dos Santos Utmazian MN; Wieshammer G; Vega R; Wenzel WW Environ Pollut; 2007 Jul; 148(1):155-65. PubMed ID: 17241723 [TBL] [Abstract][Full Text] [Related]
8. Uptake of Cd, Zn and Mn by willow increases during terrestrialisation of initially ponded polluted sediments. Vandecasteele B; Quataert P; Tack FM Sci Total Environ; 2007 Jul; 380(1-3):133-43. PubMed ID: 17207520 [TBL] [Abstract][Full Text] [Related]
9. Growth and trace metal accumulation of two Salix clones on sediment-derived soils with increasing contamination levels. Vandecasteele B; Meers E; Vervaeke P; De Vos B; Quataert P; Tack FM Chemosphere; 2005 Feb; 58(8):995-1002. PubMed ID: 15664607 [TBL] [Abstract][Full Text] [Related]
10. Cadmium and zinc uptake by volunteer willow species and elder rooting in polluted dredged sediment disposal sites. Vandecasteele B; De Vos B; Tack FM Sci Total Environ; 2002 Nov; 299(1-3):191-205. PubMed ID: 12462585 [TBL] [Abstract][Full Text] [Related]
11. Heavy metal concentrations in a soil-plant-snail food chain along a terrestrial soil pollution gradient. Notten MJ; Oosthoek AJ; Rozema J; Aerts R Environ Pollut; 2005 Nov; 138(1):178-90. PubMed ID: 16005127 [TBL] [Abstract][Full Text] [Related]
12. Heavy metals in coastal wetland sediments of the Pearl River Estuary, China. Li Q; Wu Z; Chu B; Zhang N; Cai S; Fang J Environ Pollut; 2007 Sep; 149(2):158-64. PubMed ID: 17321652 [TBL] [Abstract][Full Text] [Related]
13. The solid-solution partitioning of heavy metals (Cd and Zn) in soil and dredged sediments for environmental management purposes. Unamuno VI; Meers E; Tack FM Commun Agric Appl Biol Sci; 2006; 71(1):245-7. PubMed ID: 17191515 [No Abstract] [Full Text] [Related]
14. Field trial setup for heavy metal removal from dredged sediments using intensive cultures of the willow Salix viminalis. Meers E; Vervaeke P; Tack FM; Lust N; Verloo MG Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(4):141-6. PubMed ID: 15954279 [No Abstract] [Full Text] [Related]
15. Impact of dewatering and afforestation of contaminated dredged sediment on metal fractionation and mobility. Vervaeke P; Meers E; Tack FM; Lust N; Verloo MG Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(4):135-9. PubMed ID: 15954278 [No Abstract] [Full Text] [Related]
16. Influence of tidal regime on the distribution of trace metals in a contaminated tidal freshwater marsh soil colonized with common reed (Phragmites australis). Teuchies J; de Deckere E; Bervoets L; Meynendonckx J; van Regenmortel S; Blust R; Meire P Environ Pollut; 2008 Sep; 155(1):20-30. PubMed ID: 18158203 [TBL] [Abstract][Full Text] [Related]
17. Heavy metal accumulation in trees growing on contaminated sites in Central Europe. Unterbrunner R; Puschenreiter M; Sommer P; Wieshammer G; Tlustos P; Zupan M; Wenzel WW Environ Pollut; 2007 Jul; 148(1):107-14. PubMed ID: 17224228 [TBL] [Abstract][Full Text] [Related]
18. Heavy metal contamination in surface sediments of Yangtze River intertidal zone: an assessment from different indexes. Zhang W; Feng H; Chang J; Qu J; Xie H; Yu L Environ Pollut; 2009 May; 157(5):1533-43. PubMed ID: 19217701 [TBL] [Abstract][Full Text] [Related]
19. Intra- and inter-annual variation of Cd, Zn, Mn and Cu in foliage of poplars on contaminated soil. Lettens S; Vandecasteele B; De Vos B; Vansteenkiste D; Verschelde P Sci Total Environ; 2011 May; 409(11):2306-16. PubMed ID: 21420720 [TBL] [Abstract][Full Text] [Related]
20. The effect of hydrological regime on the metal bioavailability for the wetland plant species Salix cinerea. Vandecasteele B; Quataert P; Tack FM Environ Pollut; 2005 May; 135(2):303-12. PubMed ID: 15734590 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]