BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 19619918)

  • 1. Diabetic effects on microchambers and macrochambers tissue properties in human heel pads.
    Hsu CC; Tsai WC; Hsiao TY; Tseng FY; Shau YW; Wang CL; Lin SC
    Clin Biomech (Bristol, Avon); 2009 Oct; 24(8):682-6. PubMed ID: 19619918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of the augmentation effects of hyaluronic acid on different heel structures in amputated lower limbs of diabetic patients using ultrasound elastography.
    Hsu CC; Chen CP; Lin SC; Tsai WC; Liu HT; Lin YC; Lee HJ; Chen WP
    Ultrasound Med Biol; 2012 Jun; 38(6):943-52. PubMed ID: 22502884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microchambers and macrochambers in heel pads: are they functionally different?
    Hsu CC; Tsai WC; Wang CL; Pao SH; Shau YW; Chuan YS
    J Appl Physiol (1985); 2007 Jun; 102(6):2227-31. PubMed ID: 17272407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altered energy dissipation ratio of the plantar soft tissues under the metatarsal heads in patients with type 2 diabetes mellitus: a pilot study.
    Hsu CC; Tsai WC; Shau YW; Lee KL; Hu CF
    Clin Biomech (Bristol, Avon); 2007 Jan; 22(1):67-73. PubMed ID: 17011684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An inverse finite-element model of heel-pad indentation.
    Erdemir A; Viveiros ML; Ulbrecht JS; Cavanagh PR
    J Biomech; 2006; 39(7):1279-86. PubMed ID: 15907330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heel Pad Stiffness in Plantar Heel Pain by Shear Wave Elastography.
    Lin CY; Lin CC; Chou YC; Chen PY; Wang CL
    Ultrasound Med Biol; 2015 Nov; 41(11):2890-8. PubMed ID: 26299685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Altered heel-pad mechanical properties in patients with Type 2 diabetes mellitus.
    Hsu TC; Wang CL; Shau YW; Tang FT; Li KL; Chen CY
    Diabet Med; 2000 Dec; 17(12):854-9. PubMed ID: 11168328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanics of the heel pad for type 2 diabetic patients.
    Hsu TC; Lee YS; Shau YW
    Clin Biomech (Bristol, Avon); 2002 May; 17(4):291-6. PubMed ID: 12034122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in the thickness and stiffness of plantar soft tissues in people with diabetic peripheral neuropathy.
    Sun JH; Cheng BK; Zheng YP; Huang YP; Leung JY; Cheing GL
    Arch Phys Med Rehabil; 2011 Sep; 92(9):1484-9. PubMed ID: 21762874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of heel-pad thickness and loading protocol on measured heel-pad stiffness and a standardized protocol for inter-subject comparability.
    Spears IR; Miller-Young JE
    Clin Biomech (Bristol, Avon); 2006 Feb; 21(2):204-12. PubMed ID: 16289518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bulk compressive properties of the heel fat pad during walking: a pilot investigation in plantar heel pain.
    Wearing SC; Smeathers JE; Yates B; Urry SR; Dubois P
    Clin Biomech (Bristol, Avon); 2009 May; 24(4):397-402. PubMed ID: 19232452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mechanical properties of the heel pad in unilateral plantar heel pain syndrome.
    Tsai WC; Wang CL; Hsu TC; Hsieh FJ; Tang FT
    Foot Ankle Int; 1999 Oct; 20(10):663-8. PubMed ID: 10541000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The compressive mechanical properties of diabetic and non-diabetic plantar soft tissue.
    Pai S; Ledoux WR
    J Biomech; 2010 Jun; 43(9):1754-60. PubMed ID: 20207359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of loading history on material properties of human heel pad: an in-vivo pilot investigation during gait.
    Teng ZL; Yang XG; Geng X; Gu YJ; Huang R; Chen WM; Wang C; Chen L; Zhang C; Helili M; Huang JZ; Wang X; Ma X
    BMC Musculoskelet Disord; 2022 Mar; 23(1):254. PubMed ID: 35292004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the mechanical properties of a dermal equivalent compared with human skin in vivo by indentation and static friction tests.
    Zahouani H; Pailler-Mattei C; Sohm B; Vargiolu R; Cenizo V; Debret R
    Skin Res Technol; 2009 Feb; 15(1):68-76. PubMed ID: 19152581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variations in heel pad mechanical properties variation between children and young adults.
    Wang CL; Hsu TC; Shau YW; Wong MK
    J Formos Med Assoc; 1998 Dec; 97(12):850-4. PubMed ID: 9884488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The relationship between the mechanical properties of heel-pad and common clinical measures associated with foot ulcers in patients with diabetes.
    Chatzistergos PE; Naemi R; Sundar L; Ramachandran A; Chockalingam N
    J Diabetes Complications; 2014; 28(4):488-93. PubMed ID: 24795257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilization of the foot load monitor for evaluating deep plantar tissue stresses in patients with diabetes: proof-of-concept studies.
    Atlas E; Yizhar Z; Khamis S; Slomka N; Hayek S; Gefen A
    Gait Posture; 2009 Apr; 29(3):377-82. PubMed ID: 19027302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo examination of the dynamic properties of the human heel pad.
    Kinoshita H; Ogawa T; Kuzuhara K; Ikuta K
    Int J Sports Med; 1993 Aug; 14(6):312-9. PubMed ID: 8407060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic indentation on human skin in vivo: ageing effects.
    Boyer G; Laquièze L; Le Bot A; Laquièze S; Zahouani H
    Skin Res Technol; 2009 Feb; 15(1):55-67. PubMed ID: 19152580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.