These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 19620214)

  • 21. Stringent Response Regulators Contribute to Recovery from Glucose Phosphate Stress in Escherichia coli.
    Kessler JR; Cobe BL; Richards GR
    Appl Environ Microbiol; 2017 Dec; 83(24):. PubMed ID: 28986375
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glucose uptake regulation in E. coli by the small RNA SgrS: comparative analysis of E. coli K-12 (JM109 and MG1655) and E. coli B (BL21).
    Negrete A; Ng WI; Shiloach J
    Microb Cell Fact; 2010 Sep; 9():75. PubMed ID: 20920177
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation and function of Escherichia coli sugar efflux transporter A (SetA) during glucose-phosphate stress.
    Sun Y; Vanderpool CK
    J Bacteriol; 2011 Jan; 193(1):143-53. PubMed ID: 20971900
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanism of RNA silencing by Hfq-binding small RNAs.
    Aiba H
    Curr Opin Microbiol; 2007 Apr; 10(2):134-9. PubMed ID: 17383928
    [TBL] [Abstract][Full Text] [Related]  

  • 25. RNA biochemistry. Determination of in vivo target search kinetics of regulatory noncoding RNA.
    Fei J; Singh D; Zhang Q; Park S; Balasubramanian D; Golding I; Vanderpool CK; Ha T
    Science; 2015 Mar; 347(6228):1371-4. PubMed ID: 25792329
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of Attenuators of Transcriptional Termination: Implications for RNA Regulation in Escherichia coli.
    Morita T; Majdalani N; Miura MC; Inose R; Oshima T; Tomita M; Kanai A; Gottesman S
    mBio; 2022 Dec; 13(6):e0237122. PubMed ID: 36226957
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hfq CLASH uncovers sRNA-target interaction networks linked to nutrient availability adaptation.
    Iosub IA; van Nues RW; McKellar SW; Nieken KJ; Marchioretto M; Sy B; Tree JJ; Viero G; Granneman S
    Elife; 2020 May; 9():. PubMed ID: 32356726
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of the Interaction Between the Small Regulatory Peptide SgrT and the EIICBGlc of the Glucose-Phosphotransferase System of E. coli K-12.
    Kosfeld A; Jahreis K
    Metabolites; 2012 Oct; 2(4):756-74. PubMed ID: 24957761
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Small RNA binding-site multiplicity involved in translational regulation of a polycistronic mRNA.
    Rice JB; Balasubramanian D; Vanderpool CK
    Proc Natl Acad Sci U S A; 2012 Oct; 109(40):E2691-8. PubMed ID: 22988087
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reducing acetate excretion from E. coli K-12 by over-expressing the small RNA SgrS.
    Negrete A; Majdalani N; Phue JN; Shiloach J
    N Biotechnol; 2013 Jan; 30(2):269-73. PubMed ID: 22107968
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heterologous Expression of Der Homologs in an Escherichia coli der Mutant and Their Functional Complementation.
    Choi E; Kang N; Jeon Y; Pai HS; Kim SG; Hwang J
    J Bacteriol; 2016 Sep; 198(17):2284-96. PubMed ID: 27297882
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Acidic Residues in the Hfq Chaperone Increase the Selectivity of sRNA Binding and Annealing.
    Panja S; Santiago-Frangos A; Schu DJ; Gottesman S; Woodson SA
    J Mol Biol; 2015 Nov; 427(22):3491-3500. PubMed ID: 26196441
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hfq-dependent mRNA unfolding promotes sRNA-based inhibition of translation.
    Hoekzema M; Romilly C; Holmqvist E; Wagner EGH
    EMBO J; 2019 Apr; 38(7):. PubMed ID: 30833291
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two seemingly homologous noncoding RNAs act hierarchically to activate glmS mRNA translation.
    Urban JH; Vogel J
    PLoS Biol; 2008 Mar; 6(3):e64. PubMed ID: 18351803
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recognition of the small regulatory RNA RydC by the bacterial Hfq protein.
    Dimastrogiovanni D; Fröhlich KS; Bandyra KJ; Bruce HA; Hohensee S; Vogel J; Luisi BF
    Elife; 2014 Dec; 3():. PubMed ID: 25551292
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Depletion of glycolytic intermediates plays a key role in glucose-phosphate stress in Escherichia coli.
    Richards GR; Patel MV; Lloyd CR; Vanderpool CK
    J Bacteriol; 2013 Nov; 195(21):4816-25. PubMed ID: 23995640
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sequence and complementation analysis of recF genes from Escherichia coli, Salmonella typhimurium, Pseudomonas putida and Bacillus subtilis: evidence for an essential phosphate binding loop.
    Sandler SJ; Chackerian B; Li JT; Clark AJ
    Nucleic Acids Res; 1992 Feb; 20(4):839-45. PubMed ID: 1542576
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Phosphorolytic Exoribonucleases Polynucleotide Phosphorylase and RNase PH Stabilize sRNAs and Facilitate Regulation of Their mRNA Targets.
    Cameron TA; De Lay NR
    J Bacteriol; 2016 Dec; 198(24):3309-3317. PubMed ID: 27698082
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The novel transcription factor SgrR coordinates the response to glucose-phosphate stress.
    Vanderpool CK; Gottesman S
    J Bacteriol; 2007 Mar; 189(6):2238-48. PubMed ID: 17209026
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular characterization of global regulatory RNA species that control pathogenicity factors in Erwinia amylovora and Erwinia herbicola pv. gypsophilae.
    Ma W; Cui Y; Liu Y; Dumenyo CK; Mukherjee A; Chatterjee AK
    J Bacteriol; 2001 Mar; 183(6):1870-80. PubMed ID: 11222584
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.