BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 19620670)

  • 1. Investigating unsaturated fat, monensin, or bromoethanesulfonate in continuous cultures retaining ruminal protozoa. II. Interaction of treatment and presence of protozoa on prokaryotic communities.
    Karnati SK; Yu Z; Firkins JL
    J Dairy Sci; 2009 Aug; 92(8):3861-73. PubMed ID: 19620670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating unsaturated fat, monensin, or bromoethanesulfonate in continuous cultures retaining ruminal protozoa. I. Fermentation, biohydrogenation, and microbial protein synthesis.
    Karnati SK; Sylvester JT; Ribeiro CV; Gilligan LE; Firkins JL
    J Dairy Sci; 2009 Aug; 92(8):3849-60. PubMed ID: 19620669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rumen protozoa and methanogenesis: not a simple cause-effect relationship.
    Morgavi DP; Martin C; Jouany JP; Ranilla MJ
    Br J Nutr; 2012 Feb; 107(3):388-97. PubMed ID: 21762544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rumen ciliated protozoa decrease generation time and adjust 18S ribosomal DNA copies to adapt to decreased transfer interval, starvation, and monensin.
    Sylvester JT; Karnati SK; Dehority BA; Morrison M; Smith GL; St-Pierre NR; Firkins JL
    J Dairy Sci; 2009 Jan; 92(1):256-69. PubMed ID: 19109285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of tea saponin on methanogenesis, microbial community structure and expression of mcrA gene, in cultures of rumen micro-organisms.
    Guo YQ; Liu JX; Lu Y; Zhu WY; Denman SE; McSweeney CS
    Lett Appl Microbiol; 2008 Nov; 47(5):421-6. PubMed ID: 19146532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tea saponins affect in vitro fermentation and methanogenesis in faunated and defaunated rumen fluid.
    Hu WL; Wu YM; Liu JX; Guo YQ; Ye JA
    J Zhejiang Univ Sci B; 2005 Aug; 6(8):787-92. PubMed ID: 16052712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of molasses and monensin in alfalfa hay- or corn silage-based diets on rumen fermentation, total tract digestibility, and milk production by Holstein cows.
    Oelker ER; Reveneau C; Firkins JL
    J Dairy Sci; 2009 Jan; 92(1):270-85. PubMed ID: 19109286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term defaunation increases the abundance of cellulolytic ruminococci and methanogens but does not affect the bacterial and methanogen diversity in the rumen of sheep.
    Mosoni P; Martin C; Forano E; Morgavi DP
    J Anim Sci; 2011 Mar; 89(3):783-91. PubMed ID: 21346137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect and mode of action of saponins on the microbial populations and fermentation in the rumen and ruminant production.
    Patra AK; Saxena J
    Nutr Res Rev; 2009 Dec; 22(2):204-19. PubMed ID: 20003589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of protozoa on methane production in rumen and hindgut of calves around time of weaning.
    Schönhusen U; Zitnan R; Kuhla S; Jentsch W; Derno M; Voigt J
    Arch Tierernahr; 2003 Aug; 57(4):279-95. PubMed ID: 14533867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of partial ruminal defaunation on urea-nitrogen recycling, nitrogen metabolism, and microbial nitrogen supply in growing lambs fed low or high dietary crude protein concentrations.
    Kiran D; Mutsvangwa T
    J Anim Sci; 2010 Mar; 88(3):1034-47. PubMed ID: 19966167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic changes in the rumen following protozoal inoculation of fauna-free sheep fed a corn silage diet supplemented with casein or soybean meal.
    Ivan M; Charmley LL; Neill L; Hidiroglou M
    Ann Rech Vet; 1991; 22(2):227-38. PubMed ID: 1897873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of the effect of presence or absence of protozoa on rumen fermentation and microbial protein contribution to the chyme.
    Belanche A; Abecia L; Holtrop G; Guada JA; Castrillo C; de la Fuente G; Balcells J
    J Anim Sci; 2011 Dec; 89(12):4163-74. PubMed ID: 21724942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of antibiotics and oil on microbial profiles and fermentation in mixed cultures of ruminal microorganisms.
    Johnson MC; Devine AA; Ellis JC; Grunden AM; Fellner V
    J Dairy Sci; 2009 Sep; 92(9):4467-80. PubMed ID: 19700708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of lasalocid, monensin and thiopeptin on rumen protozoa.
    Dennis SM; Nagaraja TG; Dayton AD
    Res Vet Sci; 1986 Sep; 41(2):251-6. PubMed ID: 3775116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficacy of ionophores in cattle diets for mitigation of enteric methane.
    Guan H; Wittenberg KM; Ominski KH; Krause DO
    J Anim Sci; 2006 Jul; 84(7):1896-906. PubMed ID: 16775074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of concentrate replacement by feed blocks on ruminal fermentation and microbial growth in goats and single-flow continuous-culture fermenters.
    Molina-Alcaide E; Pascual MR; Cantalapiedra-Hijar G; Morales-García EY; Martín-García AI
    J Anim Sci; 2009 Apr; 87(4):1321-33. PubMed ID: 19098232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between rumen ammonia levels and the microbial population and volatile fatty acid proportions in faunated and defaunated sheep.
    Males JR; Purser DB
    Appl Microbiol; 1970 Mar; 19(3):483-90. PubMed ID: 5440173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of monensin withdrawal on rumen fermentation, methanogenesis and microbial populations in cattle.
    Abrar A; Tsukahara T; Kondo M; Ban-Tokuda T; Chao W; Matsui H
    Anim Sci J; 2015 Sep; 86(9):849-54. PubMed ID: 25782058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of methanogenesis by nitrate, with or without defaunation, in continuous culture.
    Wenner BA; Wagner BK; St-Pierre NR; Yu ZT; Firkins JL
    J Dairy Sci; 2020 Aug; 103(8):7124-7140. PubMed ID: 32600762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.