BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 19621222)

  • 1. Biotechnological production of D-glyceric acid and its application.
    Habe H; Fukuoka T; Kitamoto D; Sakaki K
    Appl Microbiol Biotechnol; 2009 Sep; 84(3):445-52. PubMed ID: 19621222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of glyceric acid by Gluconobacter sp. NBRC3259 using raw glycerol.
    Habe H; Shimada Y; Fukuoka T; Kitamoto D; Itagaki M; Watanabe K; Yanagishita H; Sakaki K
    Biosci Biotechnol Biochem; 2009 Aug; 73(8):1799-805. PubMed ID: 19661679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of a Gluconobacter frateurii mutant to prevent dihydroxyacetone accumulation during glyceric acid production from glycerol.
    Habe H; Shimada Y; Fukuoka T; Kitamoto D; Itagaki M; Watanabe K; Yanagishita H; Yakushi T; Matsushita K; Sakaki K
    Biosci Biotechnol Biochem; 2010; 74(11):2330-2. PubMed ID: 21071844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial production of glyceric acid, an organic acid that can be mass produced from glycerol.
    Habe H; Shimada Y; Yakushi T; Hattori H; Ano Y; Fukuoka T; Kitamoto D; Itagaki M; Watanabe K; Yanagishita H; Matsushita K; Sakaki K
    Appl Environ Microbiol; 2009 Dec; 75(24):7760-6. PubMed ID: 19837846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preliminary Evaluation of Glyceric Acid-producing Ability of Acidomonas methanolica NBRC104435 from Glycerol Containing Methanol.
    Sato S; Kitamoto D; Habe H
    J Oleo Sci; 2017 Jun; 66(6):653-658. PubMed ID: 28515381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical mutagenesis of Gluconobacter frateurii to construct methanol-resistant mutants showing glyceric acid production from methanol-containing glycerol.
    Sato S; Kitamoto D; Habe H
    J Biosci Bioeng; 2014 Feb; 117(2):197-199. PubMed ID: 23916855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression and characterization of a class III alcohol dehydrogenase gene from Gluconobacter frateurii in the presence of methanol during glyceric acid production from glycerol.
    Sato S; Morita N; Kitamoto D; Habe H
    J Oleo Sci; 2013; 62(10):835-42. PubMed ID: 24088521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotransformation of glycerol to D-glyceric acid by Acetobacter tropicalis.
    Habe H; Fukuoka T; Kitamoto D; Sakaki K
    Appl Microbiol Biotechnol; 2009 Jan; 81(6):1033-9. PubMed ID: 18853153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of Glyceric Acid to Bio-related Functional Materials and Improvement of Microbial Production.
    Sato S
    J Oleo Sci; 2021 Mar; 70(3):289-295. PubMed ID: 33583924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient glycerol transformation by resting Gluconobacter cells.
    Jackson E; Ripoll M; Betancor L
    Microbiologyopen; 2019 Dec; 8(12):e926. PubMed ID: 31532065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation of glycerol by 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) in the presence of laccase.
    Liebminger S; Siebenhofer M; Guebitz G
    Bioresour Technol; 2009 Oct; 100(20):4541-5. PubMed ID: 19464170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gluconobacter oxydans: its biotechnological applications.
    Gupta A; Singh VK; Qazi GN; Kumar A
    J Mol Microbiol Biotechnol; 2001 Jul; 3(3):445-56. PubMed ID: 11361077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient production of dihydroxyacetone from biodiesel-derived crude glycerol by newly isolated Gluconobacter frateurii.
    Liu YP; Sun Y; Tan C; Li H; Zheng XJ; Jin KQ; Wang G
    Bioresour Technol; 2013 Aug; 142():384-9. PubMed ID: 23748086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of impurities in biodiesel-derived waste glycerol on the performance and feasibility of biotechnological processes.
    Chatzifragkou A; Papanikolaou S
    Appl Microbiol Biotechnol; 2012 Jul; 95(1):13-27. PubMed ID: 22581036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of membrane-bound aldehyde dehydrogenase-encoding gene disruption on glyceric acid production in Gluconobacter oxydans.
    Habe H; Sato S; Fukuoka T; Kitamoto D; Sakaki K
    J Oleo Sci; 2014; 63(9):953-7. PubMed ID: 25174677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-stage electrodialytic concentration of glyceric acid from fermentation broth.
    Habe H; Shimada Y; Fukuoka T; Kitamoto D; Itagaki M; Watanabe K; Yanagishita H; Sakaki K
    J Biosci Bioeng; 2010 Dec; 110(6):690-5. PubMed ID: 20674487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-step oxidation of glycerol to glyceric acid catalyzed by the Phanerochaete chrysosporium glyoxal oxidase.
    Roncal T; Muñoz C; Lorenzo L; Maestro B; Díaz de Guereñu Mdel M
    Enzyme Microb Technol; 2012 Feb; 50(2):143-50. PubMed ID: 22226201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Change in product selectivity during the production of glyceric acid from glycerol by Gluconobacter strains in the presence of methanol.
    Sato S; Morita N; Kitamoto D; Yakushi T; Matsushita K; Habe H
    AMB Express; 2013 Apr; 3(1):20. PubMed ID: 23547945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial production of 1,3-propanediol from glycerol by Klebsiella pneumoniae under micro-aerobic conditions up to a pilot scale.
    Liu HJ; Zhang DJ; Xu YH; Mu Y; Sun YQ; Xiu ZL
    Biotechnol Lett; 2007 Aug; 29(8):1281-5. PubMed ID: 17503001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals.
    Zhou CH; Beltramini JN; Fan YX; Lu GQ
    Chem Soc Rev; 2008 Mar; 37(3):527-49. PubMed ID: 18224262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.