These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 19621222)

  • 21. Biotransformation of glycerol to dihydroxyacetone by recombinant Gluconobacter oxydans DSM 2343.
    Gätgens C; Degner U; Bringer-Meyer S; Herrmann U
    Appl Microbiol Biotechnol; 2007 Sep; 76(3):553-9. PubMed ID: 17497148
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Use of glycerol for producing 1,3-dihydroxyacetone by Gluconobacter oxydans in an airlift bioreactor.
    Hu ZC; Zheng YG; Shen YC
    Bioresour Technol; 2011 Jul; 102(14):7177-82. PubMed ID: 21592784
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heterologous expression of membrane-bound alcohol dehydrogenase-encoding genes for glyceric acid production using Gluconobacter sp. CHM43 and its derivatives.
    Habe H; Sato Y; Tani H; Matsutani M; Tanioka K; Theeragool G; Matsushita K; Yakushi T
    Appl Microbiol Biotechnol; 2021 Sep; 105(18):6749-6758. PubMed ID: 34453563
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Disruption of the membrane-bound alcohol dehydrogenase-encoding gene improved glycerol use and dihydroxyacetone productivity in Gluconobacter oxydans.
    Habe H; Fukuoka T; Morita T; Kitamoto D; Yakushi T; Matsushita K; Sakaki K
    Biosci Biotechnol Biochem; 2010; 74(7):1391-5. PubMed ID: 20622460
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Asymmetric synthesis of D-glyceric acid by an alditol oxidase and directed evolution for enhanced oxidative activity towards glycerol.
    Gerstenbruch S; Wulf H; Mussmann N; O'Connell T; Maurer KH; Bornscheuer UT
    Appl Microbiol Biotechnol; 2012 Dec; 96(5):1243-52. PubMed ID: 22290646
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biochemistry and biotechnological applications of Gluconobacter strains.
    Deppenmeier U; Hoffmeister M; Prust C
    Appl Microbiol Biotechnol; 2002 Nov; 60(3):233-42. PubMed ID: 12436304
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Production of hydroxypyruvate from glycerate by a novel biotechnological route.
    Gao C; Wang X; Ma C; Xu P
    Bioresour Technol; 2013 Mar; 131():552-4. PubMed ID: 23415941
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis and interfacial properties of monoacyl glyceric acids as a new class of green surfactants.
    Fukuoka T; Ikeda S; Habe H; Sato S; Sakai H; Abe M; Kitamoto D; Sakaki K
    J Oleo Sci; 2012; 61(6):343-8. PubMed ID: 22687780
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glucose oxidation by Gluconobacter oxydans: characterization in shaking-flasks, scale-up and optimization of the pH profile.
    Silberbach M; Maier B; Zimmermann M; Büchs J
    Appl Microbiol Biotechnol; 2003 Jul; 62(1):92-8. PubMed ID: 12835926
    [TBL] [Abstract][Full Text] [Related]  

  • 30. D-hexosaminate production by oxidative fermentation.
    Moonmangmee D; Adachi O; Toyama H; Matsushita K
    Appl Microbiol Biotechnol; 2004 Dec; 66(3):253-8. PubMed ID: 15290129
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A method for determination of the absolute configuration of chiral glycerol residues in natural products using TEMPO oxidation and characterization of the glyceric acids formed.
    Rundlöf T; Widmalm G
    Anal Biochem; 1996 Dec; 243(2):228-33. PubMed ID: 8954554
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Membrane-bound, 2-keto-D-gluconate-yielding D-gluconate dehydrogenase from "Gluconobacter dioxyacetonicus" IFO 3271: molecular properties and gene disruption.
    Toyama H; Furuya N; Saichana I; Ano Y; Adachi O; Matsushita K
    Appl Environ Microbiol; 2007 Oct; 73(20):6551-6. PubMed ID: 17720837
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Low-cost biotransformation of glycerol to 1,3-dihydroxyacetone through Gluconobacter frateurii in medium with inorganic salts only.
    Poljungreed I; Boonyarattanakalin S
    Lett Appl Microbiol; 2018 Jul; 67(1):39-46. PubMed ID: 29574796
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Asymmetric oxidation by Gluconobacter oxydans.
    Keliang G; Dongzhi W
    Appl Microbiol Biotechnol; 2006 Mar; 70(2):135-9. PubMed ID: 16432743
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bioconversion of crude glycerol to glycolipids in Ustilago maydis.
    Liu Y; Koh CM; Ji L
    Bioresour Technol; 2011 Feb; 102(4):3927-33. PubMed ID: 21186122
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microbial resolution of DL-glyceric acid for L-glyceric acid production with newly isolated bacterial strains.
    Sato S; Morita T; Fukuoka T; Kitamoto D; Habe H
    J Biosci Bioeng; 2015 May; 119(5):554-7. PubMed ID: 25468417
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bioprocessing of glycerol into glyceric Acid for use in bioplastic monomer.
    Fukuoka T; Habe H; Kitamoto D; Sakaki K
    J Oleo Sci; 2011; 60(7):369-73. PubMed ID: 21701101
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dunaliella biotechnology: methods and applications.
    Hosseini Tafreshi A; Shariati M
    J Appl Microbiol; 2009 Jul; 107(1):14-35. PubMed ID: 19245408
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Energy metabolism of a unique acetic acid bacterium, Asaia bogorensis, that lacks ethanol oxidation activity.
    Ano Y; Toyama H; Adachi O; Matsushita K
    Biosci Biotechnol Biochem; 2008 Apr; 72(4):989-97. PubMed ID: 18391448
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Application of electrodialysis to glycerate recovery from a glycerol containing model solution and culture broth.
    Habe H; Fukuoka T; Kitamoto D; Sakaki K
    J Biosci Bioeng; 2009 Apr; 107(4):425-8. PubMed ID: 19332303
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.