BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

541 related articles for article (PubMed ID: 19621364)

  • 1. "Reverse degradomics", monitoring of proteolytic trimming by multi-CE and confocal detection of fluorescent substrates and reaction products.
    Piccard H; Hu J; Fiten P; Proost P; Martens E; Van den Steen PE; Van Damme J; Opdenakker G
    Electrophoresis; 2009 Jul; 30(13):2366-77. PubMed ID: 19621364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protease degradomics: mass spectrometry discovery of protease substrates and the CLIP-CHIP, a dedicated DNA microarray of all human proteases and inhibitors.
    Overall CM; Tam EM; Kappelhoff R; Connor A; Ewart T; Morrison CJ; Puente X; López-Otín C; Seth A
    Biol Chem; 2004 Jun; 385(6):493-504. PubMed ID: 15255181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protease proteomics: revealing protease in vivo functions using systems biology approaches.
    Doucet A; Overall CM
    Mol Aspects Med; 2008 Oct; 29(5):339-58. PubMed ID: 18571712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of evolution-selected propeptide by high-throughput selection of a peptidomimetic inhibitor on a capillary DNA sequencer platform.
    Hu J; Fiten P; Van den Steen PE; Chaltin P; Opdenakker G
    Anal Chem; 2005 Apr; 77(7):2116-24. PubMed ID: 15801745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. N- and C-terminal degradomics: new approaches to reveal biological roles for plant proteases from substrate identification.
    Huesgen PF; Overall CM
    Physiol Plant; 2012 May; 145(1):5-17. PubMed ID: 22023699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate optimization and clinical validation of reporter peptides for MS-based protease profiling in serum specimens: a new approach for diagnosis of malignant disease.
    Yepes D; Jacob A; Dauber M; Costina V; Hofheinz R; Neumaier M; Findeisen P
    Int J Oncol; 2011 Jul; 39(1):145-54. PubMed ID: 21503574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomic profiling of proteases: tools for granzyme degradomics.
    van Domselaar R; de Poot SA; Bovenschen N
    Expert Rev Proteomics; 2010 Jun; 7(3):347-59. PubMed ID: 20536307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteases that can distinguish among different post-translational forms of tyrosine engineered using multicolor flow cytometry.
    Varadarajan N; Pogson M; Georgiou G; Iverson BL
    J Am Chem Soc; 2009 Dec; 131(50):18186-90. PubMed ID: 19924991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic techniques and activity-based probes for the system-wide study of proteolysis.
    auf dem Keller U; Schilling O
    Biochimie; 2010 Nov; 92(11):1705-14. PubMed ID: 20493233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of proteolytic products and natural protein N-termini by Terminal Amine Isotopic Labeling of Substrates (TAILS).
    Doucet A; Kleifeld O; Kizhakkedathu JN; Overall CM
    Methods Mol Biol; 2011; 753():273-87. PubMed ID: 21604129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of bacterial proteases with a panel of fluorescent peptide substrates.
    Wildeboer D; Jeganathan F; Price RG; Abuknesha RA
    Anal Biochem; 2009 Jan; 384(2):321-8. PubMed ID: 18957278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomic discovery of protease substrates.
    Schilling O; Overall CM
    Curr Opin Chem Biol; 2007 Feb; 11(1):36-45. PubMed ID: 17194619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane protease degradomics: proteomic identification and quantification of cell surface protease substrates.
    Butler GS; Dean RA; Smith D; Overall CM
    Methods Mol Biol; 2009; 528():159-76. PubMed ID: 19153692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A broad-spectrum fluorescence-based peptide library for the rapid identification of protease substrates.
    Thomas DA; Francis P; Smith C; Ratcliffe S; Ede NJ; Kay C; Wayne G; Martin SL; Moore K; Amour A; Hooper NM
    Proteomics; 2006 Apr; 6(7):2112-20. PubMed ID: 16479534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disentanglement of protease substrate repertoires.
    Van Damme P; Vandekerckhove J; Gevaert K
    Biol Chem; 2008 Apr; 389(4):371-81. PubMed ID: 18208357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein TAILS: when termini tell tales of proteolysis and function.
    Lange PF; Overall CM
    Curr Opin Chem Biol; 2013 Feb; 17(1):73-82. PubMed ID: 23298954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MS-driven protease substrate degradomics.
    Impens F; Colaert N; Helsens K; Plasman K; Van Damme P; Vandekerckhove J; Gevaert K
    Proteomics; 2010 Mar; 10(6):1284-96. PubMed ID: 20058249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Double-layer fluorescent zymography for processing protease detection.
    Katunuma N; Le QT; Miyauchi R; Hirose S
    Anal Biochem; 2005 Dec; 347(2):208-12. PubMed ID: 16289080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PNA-encoded protease substrate microarrays.
    Winssinger N; Damoiseaux R; Tully DC; Geierstanger BH; Burdick K; Harris JL
    Chem Biol; 2004 Oct; 11(10):1351-60. PubMed ID: 15489162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methods for mapping protease specificity.
    Diamond SL
    Curr Opin Chem Biol; 2007 Feb; 11(1):46-51. PubMed ID: 17157549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.