These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 19621904)
1. Thermally responsive fluid behaviors in hydrophobic nanopores. Liu L; Zhao J; Culligan PJ; Qiao Y; Chen X Langmuir; 2009 Oct; 25(19):11862-8. PubMed ID: 19621904 [TBL] [Abstract][Full Text] [Related]
2. Mechanisms of water infiltration into conical hydrophobic nanopores. Liu L; Zhao J; Yin CY; Culligan PJ; Chen X Phys Chem Chem Phys; 2009 Aug; 11(30):6520-4. PubMed ID: 19809685 [TBL] [Abstract][Full Text] [Related]
3. Temperature dependence of fluid transport in nanopores. Xu B; Wang B; Park T; Qiao Y; Zhou Q; Chen X J Chem Phys; 2012 May; 136(18):184701. PubMed ID: 22583303 [TBL] [Abstract][Full Text] [Related]
4. Effect of electric field on liquid infiltration into hydrophobic nanopores. Xu B; Qiao Y; Zhou Q; Chen X Langmuir; 2011 May; 27(10):6349-57. PubMed ID: 21491865 [TBL] [Abstract][Full Text] [Related]
5. Thermal effect on the dynamic infiltration of water into single-walled carbon nanotubes. Zhao J; Liu L; Culligan PJ; Chen X Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061206. PubMed ID: 20365160 [TBL] [Abstract][Full Text] [Related]
6. Thermodynamics of hydrogen adsorption in slit-like carbon nanopores at 77 K. Classical versus path-integral Monte Carlo simulations. Kowalczyk P; Gauden PA; Terzyk AP; Bhatia SK Langmuir; 2007 Mar; 23(7):3666-72. PubMed ID: 17323981 [TBL] [Abstract][Full Text] [Related]
7. Transport properties and distribution of water molecules confined in hydrophobic nanopores and nanoslits. Liu Y; Wang Q; Lu L Langmuir; 2004 Aug; 20(16):6921-6. PubMed ID: 15274604 [TBL] [Abstract][Full Text] [Related]
8. Experimental study on energy dissipation of electrolytes in nanopores. Zhao J; Culligan PJ; Germaine JT; Chen X Langmuir; 2009 Nov; 25(21):12687-96. PubMed ID: 19791780 [TBL] [Abstract][Full Text] [Related]
9. Molecular dynamics simulation study of the structural characteristics of water molecules confined in functionalized carbon nanotubes. Huang LL; Zhang LZ; Shao Q; Wang J; Lu LH; Lu XH; Jiang SY; Shen WF J Phys Chem B; 2006 Dec; 110(51):25761-8. PubMed ID: 17181218 [TBL] [Abstract][Full Text] [Related]
10. Water confinement in hydrophobic nanopores. Pressure-induced wetting and drying. Smirnov S; Vlassiouk I; Takmakov P; Rios F ACS Nano; 2010 Sep; 4(9):5069-75. PubMed ID: 20690599 [TBL] [Abstract][Full Text] [Related]
11. Thermal effects of water intrusion in hydrophobic nanoporous materials. Karbowiak T; Paulin C; Ballandras A; Weber G; Bellat JP J Am Chem Soc; 2009 Jul; 131(29):9898-9. PubMed ID: 19621951 [TBL] [Abstract][Full Text] [Related]
12. Adsorption and self-assembly of surfactant/supercritical CO2 systems in confined pores: a molecular dynamics simulation. Xu Z; Yang X; Yang Z Langmuir; 2007 Aug; 23(18):9201-12. PubMed ID: 17676777 [TBL] [Abstract][Full Text] [Related]
13. Surface excess free energy of simple fluids confined in cylindrical pores by isothermal-isobaric Monte Carlo: influence of pore size. Puibasset J J Chem Phys; 2007 May; 126(18):184701. PubMed ID: 17508818 [TBL] [Abstract][Full Text] [Related]
18. Effects of the addition of electrolyte on liquid infiltration in a hydrophobic nanoporous silica gel. Han A; Chen X; Qiao Y Langmuir; 2008 Jul; 24(14):7044-7. PubMed ID: 18564859 [TBL] [Abstract][Full Text] [Related]
19. Confinement Correction to Mercury Intrusion Capillary Pressure of Shale Nanopores. Wang S; Javadpour F; Feng Q Sci Rep; 2016 Feb; 6():20160. PubMed ID: 26832445 [TBL] [Abstract][Full Text] [Related]
20. Hydrogen storage in pure and Li-doped carbon nanopores: combined effects of concavity and doping. Cabria I; López MJ; Alonso JA J Chem Phys; 2008 Apr; 128(14):144704. PubMed ID: 18412468 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]