BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 19621950)

  • 21. Nanometer sized tridecylamine capped Rhodium dispersed on high surface area support: catalytic investigations.
    Joseph T; Shintri S; Kakade B; Pillai V; Halligudi SB
    J Nanosci Nanotechnol; 2007 Aug; 7(8):2870-6. PubMed ID: 17685309
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Catalytic electrochemistry of a [NiFeSe]-hydrogenase on TiO2 and demonstration of its suitability for visible-light driven H2 production.
    Reisner E; Fontecilla-Camps JC; Armstrong FA
    Chem Commun (Camb); 2009 Feb; (5):550-2. PubMed ID: 19283287
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Carbohydrate-derived 1,3-diphosphite ligands as chiral nanoparticle stabilizers: promising catalytic systems for asymmetric hydrogenation.
    Gual A; Godard C; Philippot K; Chaudret B; Denicourt-Nowicki A; Roucoux A; Castillón S; Claver C
    ChemSusChem; 2009; 2(8):769-79. PubMed ID: 19598200
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Current transients in single nanoparticle collision events.
    Xiao X; Fan FR; Zhou J; Bard AJ
    J Am Chem Soc; 2008 Dec; 130(49):16669-77. PubMed ID: 19554731
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recyclable rhodium nanoparticles: green hydrothermal synthesis, characterization, and highly catalytic performance in reduction of nitroarenes.
    Lee Y; Jang S; Cho CW; Bae JS; Park S; Park KH
    J Nanosci Nanotechnol; 2013 Nov; 13(11):7477-81. PubMed ID: 24245277
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface-nitrogen removal in a steady-state NO + H2 reaction on Pd(110).
    Ma Y; Matsushima T
    J Phys Chem B; 2005 Jan; 109(3):1256-61. PubMed ID: 16851089
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Noble-metal-free bimetallic nanoparticle-catalyzed selective hydrogen generation from hydrous hydrazine for chemical hydrogen storage.
    Singh SK; Singh AK; Aranishi K; Xu Q
    J Am Chem Soc; 2011 Dec; 133(49):19638-41. PubMed ID: 22070579
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assembly of Pt nanoparticles on electrospun In2O3 nanofibers for H2S detection.
    Zheng W; Lu X; Wang W; Li Z; Zhang H; Wang Z; Xu X; Li S; Wang C
    J Colloid Interface Sci; 2009 Oct; 338(2):366-70. PubMed ID: 19619881
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis and photocatalytic activity of rhodium-doped calcium niobate nanosheets for hydrogen production from a water/methanol system without cocatalyst loading.
    Okamoto Y; Ida S; Hyodo J; Hagiwara H; Ishihara T
    J Am Chem Soc; 2011 Nov; 133(45):18034-7. PubMed ID: 21999601
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A facile solution-chemistry method for Cu(OH)2 nanoribbon arrays with noticeable electrochemical hydrogen storage ability at room temperature.
    Gao P; Zhang M; Niu Z; Xiao Q
    Chem Commun (Camb); 2007 Dec; (48):5197-9. PubMed ID: 18060140
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ligand-assisted preparation of palladium supported nanoparticles: a step toward size control.
    Rossi LM; Nangoi IM; Costa NJ
    Inorg Chem; 2009 Jun; 48(11):4640-2. PubMed ID: 19400564
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inverse gas chromatographic investigation of the active sites related to CO adsorption over Rh/SiO2 catalysts in excess of hydrogen.
    Gavril D; Georgaka A; Loukopoulos V; Karaiskakis G
    J Chromatogr A; 2007 Aug; 1160(1-2):289-98. PubMed ID: 17543974
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced shape stability of Pd-Rh core-frame nanocubes at elevated temperature: in situ heating transmission electron microscopy.
    Lu N; Wang J; Xie S; Xia Y; Kim MJ
    Chem Commun (Camb); 2013 Dec; 49(100):11806-8. PubMed ID: 24178397
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of the NH2 substituent on NH3: hydrazine as an alternative for ammonia in hydrogen release in the presence of boranes and alanes.
    Vinh-Son N; Swinnen S; Matus MH; Nguyen MT; Dixon DA
    Phys Chem Chem Phys; 2009 Aug; 11(30):6339-44. PubMed ID: 19809664
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sustainable preparation of supported metal nanoparticles and their applications in catalysis.
    Campelo JM; Luna D; Luque R; Marinas JM; Romero AA
    ChemSusChem; 2009; 2(1):18-45. PubMed ID: 19142903
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rhodium-nickel bimetallic nanocatalysts: high performance of room-temperature hydrogenation.
    Duan H; Wang D; Kou Y; Li Y
    Chem Commun (Camb); 2013 Jan; 49(3):303-5. PubMed ID: 23183720
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrogen cycling of niobium and vanadium catalyzed nanostructured magnesium.
    Schimmel HG; Huot J; Chapon LC; Tichelaar FD; Mulder FM
    J Am Chem Soc; 2005 Oct; 127(41):14348-54. PubMed ID: 16218629
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bimetallic nickel-iridium nanocatalysts for hydrogen generation by decomposition of hydrous hydrazine.
    Singh SK; Xu Q
    Chem Commun (Camb); 2010 Sep; 46(35):6545-7. PubMed ID: 20721368
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Straightforward green synthesis of "naked" aqueous silver nanoparticles.
    Giuffrida S; Ventimiglia G; Sortino S
    Chem Commun (Camb); 2009 Jul; (27):4055-7. PubMed ID: 19568631
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydrogen dissociation catalyzed by carbon-coated nickel nanoparticles: experiment and theory.
    Yermakov AY; Boukhvalov DW; Uimin MA; Lokteva ES; Erokhin AV; Schegoleva NN
    Chemphyschem; 2013 Feb; 14(2):381-5. PubMed ID: 23292828
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.