BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 19622073)

  • 1. Anaerobic central metabolic pathways active during polyhydroxyalkanoate production in uncultured cluster 1 Defluviicoccus enriched in activated sludge communities.
    Burow LC; Mabbett AN; Borrás L; Blackall LL
    FEMS Microbiol Lett; 2009 Sep; 298(1):79-84. PubMed ID: 19622073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction of membrane permeability in Escherichia coli mediated by lysis protein of the ColE7 operon.
    Burow LC; Mabbett AN; Borrás L; Blackall LL
    FEMS Microbiol Lett; 2009 Sep; 298(1):85-92. PubMed ID: 19673051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anaerobic glyoxylate cycle activity during simultaneous utilization of glycogen and acetate in uncultured Accumulibacter enriched in enhanced biological phosphorus removal communities.
    Burow LC; Mabbett AN; Blackall LL
    ISME J; 2008 Oct; 2(10):1040-51. PubMed ID: 18784756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ecophysiology of Defluviicoccus-related tetrad-forming organisms in an anaerobic-aerobic activated sludge process.
    Wong MT; Liu WT
    Environ Microbiol; 2007 Jun; 9(6):1485-96. PubMed ID: 17504486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anaerobic metabolism of Defluviicoccus vanus related glycogen accumulating organisms (GAOs) with acetate and propionate as carbon sources.
    Dai Y; Yuan Z; Wang X; Oehmen A; Keller J
    Water Res; 2007 May; 41(9):1885-96. PubMed ID: 17368713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Filamentous members of cluster III Defluviicoccus have the in situ phenotype expected of a glycogen-accumulating organism in activated sludge.
    McIlroy SJ; Nittami T; Seviour EM; Seviour RJ
    FEMS Microbiol Ecol; 2010 Oct; 74(1):248-56. PubMed ID: 20633046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of polyhydroxyalkanoates by glycogen accumulating organisms treating a paper mill wastewater.
    Bengtsson S; Werker A; Welander T
    Water Sci Technol; 2008; 58(2):323-30. PubMed ID: 18701781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioenergetic models for acetate and phosphate transport in bacteria important in enhanced biological phosphorus removal.
    Burow LC; Mabbett AN; McEwan AG; Bond PL; Blackall LL
    Environ Microbiol; 2008 Jan; 10(1):87-98. PubMed ID: 18211269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Abundance and ecophysiology of Defluviicoccus spp., glycogen-accumulating organisms in full-scale wastewater treatment processes.
    Burow LC; Kong Y; Nielsen JL; Blackall LL; Nielsen PH
    Microbiology (Reading); 2007 Jan; 153(Pt 1):178-85. PubMed ID: 17185546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic characteristics of a glycogen-accumulating organism in Defluviicoccus cluster II revealed by comparative genomics.
    Wang Z; Guo F; Mao Y; Xia Y; Zhang T
    Microb Ecol; 2014 Nov; 68(4):716-28. PubMed ID: 24889288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic and metabolic aspects of Defluviicoccus vanus-related organisms as competitors in EBPR systems.
    Lanham AB; Reis MA; Lemos PC
    Water Sci Technol; 2008; 58(8):1693-7. PubMed ID: 19001727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Could polyphosphate-accumulating organisms (PAOs) be glycogen-accumulating organisms (GAOs)?
    Zhou Y; Pijuan M; Zeng RJ; Lu H; Yuan Z
    Water Res; 2008 May; 42(10-11):2361-8. PubMed ID: 18222522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The denitrification capability of cluster 1 Defluviicoccus vanus-related glycogen-accumulating organisms.
    Wang X; Zeng RJ; Dai Y; Peng Y; Yuan Z
    Biotechnol Bioeng; 2008 Apr; 99(6):1329-36. PubMed ID: 18023040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic model for glycogen-accumulating organisms in anaerobic/aerobic activated sludge systems.
    Zeng RJ; van Loosdrecht MC; Yuan Z; Keller J
    Biotechnol Bioeng; 2003 Jan; 81(1):92-105. PubMed ID: 12432585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic model for acetate uptake by a mixed culture of phosphate- and glycogen-accumulating organisms under anaerobic conditions.
    Yagci N; Artan N; Cokgör EU; Randall CW; Orhon D
    Biotechnol Bioeng; 2003 Nov; 84(3):359-73. PubMed ID: 12968290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of polyhydroxyalkanoates production by activated sludges from anaerobic and oxic zones of an enhanced biological phosphorus removal system: effect of sludge retention time.
    Chang HF; Chang WC; Chuang SH; Fang YL
    Bioresour Technol; 2011 May; 102(9):5473-8. PubMed ID: 21093256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The utilization of glycogen accumulating organisms for mixed culture production of polyhydroxyalkanoates.
    Bengtsson S
    Biotechnol Bioeng; 2009 Nov; 104(4):698-708. PubMed ID: 19530079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of the TCA cycle in the anaerobic metabolism of polyphosphate accumulating organisms (PAOs).
    Zhou Y; Pijuan M; Zeng RJ; Yuan Z
    Water Res; 2009 Mar; 43(5):1330-40. PubMed ID: 19144373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elucidation of metabolic pathways in glycogen-accumulating organisms with in vivo 13C nuclear magnetic resonance.
    Lemos PC; Dai Y; Yuan Z; Keller J; Santos H; Reis MA
    Environ Microbiol; 2007 Nov; 9(11):2694-706. PubMed ID: 17922754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Candidatus Monilibacter spp., common bulking filaments in activated sludge, are members of Cluster III Defluviicoccus.
    Nittami T; McIlroy S; Seviour EM; Schroeder S; Seviour RJ
    Syst Appl Microbiol; 2009 Oct; 32(7):480-9. PubMed ID: 19679419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.