These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 19622073)

  • 41. Community proteogenomics highlights microbial strain-variant protein expression within activated sludge performing enhanced biological phosphorus removal.
    Wilmes P; Andersson AF; Lefsrud MG; Wexler M; Shah M; Zhang B; Hettich RL; Bond PL; VerBerkmoes NC; Banfield JF
    ISME J; 2008 Aug; 2(8):853-64. PubMed ID: 18449217
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fully coupled activated sludge model (FCASM): model development.
    Sun P; Wang R; Fang Z
    Bioresour Technol; 2009 Oct; 100(20):4632-41. PubMed ID: 19477636
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Proposed modifications to metabolic model for glycogen-accumulating organisms under anaerobic conditions.
    Zeng R; Yuan Z; Van Loosdrecht MC; Keller J
    Biotechnol Bioeng; 2002 Nov; 80(3):277-9. PubMed ID: 12226859
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ecophysiology of the filamentous Alphaproteobacterium Meganema perideroedes in activated sludge.
    Kragelund C; Nielsen JL; Thomsen TR; Nielsen PH
    FEMS Microbiol Ecol; 2005 Sep; 54(1):111-22. PubMed ID: 16329977
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Modeling the PAO-GAO competition: effects of carbon source, pH and temperature.
    Lopez-Vazquez CM; Oehmen A; Hooijmans CM; Brdjanovic D; Gijzen HJ; Yuan Z; van Loosdrecht MC
    Water Res; 2009 Feb; 43(2):450-62. PubMed ID: 19022471
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Polymer production by bacterial strains isolated from activated sludge treating municipal wastewater.
    Yan S; Subramanian SB; Tyagi RD; Surampalli RY
    Water Sci Technol; 2008; 57(4):533-9. PubMed ID: 18359992
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Strategies for PHA production by mixed cultures and renewable waste materials.
    Serafim LS; Lemos PC; Albuquerque MG; Reis MA
    Appl Microbiol Biotechnol; 2008 Dec; 81(4):615-28. PubMed ID: 19002455
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Optimal production of polyhydroxyalkanoates (PHA) in activated sludge fed by volatile fatty acids (VFAs) generated from alkaline excess sludge fermentation.
    Mengmeng C; Hong C; Qingliang Z; Shirley SN; Jie R
    Bioresour Technol; 2009 Feb; 100(3):1399-405. PubMed ID: 18945612
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterisation of polyhydroxyalkanoate copolymers with controllable four-monomer composition.
    Dai Y; Lambert L; Yuan Z; Keller J
    J Biotechnol; 2008 Mar; 134(1-2):137-45. PubMed ID: 18313162
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Pathway identification combining metabolic flux and functional genomics analyses: acetate and propionate activation by Corynebacterium glutamicum.
    Veit A; Rittmann D; Georgi T; Youn JW; Eikmanns BJ; Wendisch VF
    J Biotechnol; 2009 Mar; 140(1-2):75-83. PubMed ID: 19162097
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Genome-scale metabolic modeling to provide insight into the production of storage compounds during feast-famine cycles of activated sludge.
    Tajparast M; Frigon D
    Water Sci Technol; 2013; 67(3):469-76. PubMed ID: 23202549
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Construction of a stress-induced system in Escherichia coli for efficient polyhydroxyalkanoates production.
    Kang Z; Wang Q; Zhang H; Qi Q
    Appl Microbiol Biotechnol; 2008 May; 79(2):203-8. PubMed ID: 18347791
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enzymes involved in the anoxic utilization of phenyl methyl ethers by Desulfitobacterium hafniense DCB2 and Desulfitobacterium hafniense PCE-S.
    Kreher S; Schilhabel A; Diekert G
    Arch Microbiol; 2008 Oct; 190(4):489-95. PubMed ID: 18607569
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The source of reducing power in the anaerobic metabolism of polyphosphate accumulating organisms (PAOs) - a mini-review.
    Zhou Y; Pijuan M; Oehmen A; Yuan Z
    Water Sci Technol; 2010; 61(7):1653-62. PubMed ID: 20371922
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Modeling the aerobic metabolism of polyphosphate-accumulating organisms enriched with propionate as a carbon source.
    Oehmen A; Zeng RJ; Keller J; Yuan Z
    Water Environ Res; 2007 Dec; 79(13):2477-86. PubMed ID: 18198693
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Utilization of fadA knockout mutant Pseudomonas putida for overproduction of medium chain-length-polyhydroxyalkanoate.
    Vo MT; Lee KW; Kim TK; Lee YH
    Biotechnol Lett; 2007 Dec; 29(12):1915-20. PubMed ID: 17653511
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Improving polyhydroxyalkanoate production by knocking out the genes involved in exopolysaccharide biosynthesis in Haloferax mediterranei.
    Zhao D; Cai L; Wu J; Li M; Liu H; Han J; Zhou J; Xiang H
    Appl Microbiol Biotechnol; 2013 Apr; 97(7):3027-36. PubMed ID: 23015099
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ecology and characterization of polyhydroxyalkanoate-producing microorganisms on and in plants.
    Gasser I; Müller H; Berg G
    FEMS Microbiol Ecol; 2009 Oct; 70(1):142-50. PubMed ID: 19656194
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Acetate metabolism in Rhodopseudomonas gelatinosa and several other Rhodospirillaceae.
    Albers H; Gottschalk G
    Arch Microbiol; 1976 Dec; 111(1-2):45-9. PubMed ID: 1015959
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Community structure evolution and enrichment of glycogen-accumulating organisms producing polyhydroxyalkanoates from fermented molasses.
    Pisco AR; Bengtsson S; Werker A; Reis MA; Lemos PC
    Appl Environ Microbiol; 2009 Jul; 75(14):4676-86. PubMed ID: 19465533
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.