These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 19622137)
1. Surviving the cold: molecular analyses of insect cryoprotective dehydration in the Arctic springtail Megaphorura arctica (Tullberg). Clark MS; Thorne MA; Purać J; Burns G; Hillyard G; Popović ZD; Grubor-Lajsić G; Worland MR BMC Genomics; 2009 Jul; 10():328. PubMed ID: 19622137 [TBL] [Abstract][Full Text] [Related]
2. Differences in cold and drought tolerance of high arctic and sub-arctic populations of Megaphorura arctica Tullberg 1876 (Onychiuridae: Collembola). Bahrndorff S; Petersen SO; Loeschcke V; Overgaard J; Holmstrup M Cryobiology; 2007 Dec; 55(3):315-23. PubMed ID: 17959162 [TBL] [Abstract][Full Text] [Related]
3. Hydrogen peroxide and ecdysone in the cryoprotective dehydration strategy of Megaphorura arctica (Onychiuridae: Collembola). Grubor-Lajšić G; Petri ET; Kojić D; Purać J; Popović ZD; Worland RM; Clark MS; Mojović M; Blagojević DP Arch Insect Biochem Physiol; 2013 Feb; 82(2):59-70. PubMed ID: 23143920 [TBL] [Abstract][Full Text] [Related]
4. Proteomics of cryoprotective dehydration in Megaphorura arctica Tullberg 1876 (Onychiuridae: Collembola). Thorne MA; Worland MR; Feret R; Deery MJ; Lilley KS; Clark MS Insect Mol Biol; 2011 Jun; 20(3):303-10. PubMed ID: 21199019 [TBL] [Abstract][Full Text] [Related]
5. The springtail Megaphorura arctica survives extremely high osmolality of body fluids during drought. Holmstrup M J Comp Physiol B; 2018 Nov; 188(6):939-945. PubMed ID: 30194462 [TBL] [Abstract][Full Text] [Related]
6. Gene expression changes governing extreme dehydration tolerance in an Antarctic insect. Teets NM; Peyton JT; Colinet H; Renault D; Kelley JL; Kawarasaki Y; Lee RE; Denlinger DL Proc Natl Acad Sci U S A; 2012 Dec; 109(50):20744-9. PubMed ID: 23197828 [TBL] [Abstract][Full Text] [Related]
7. Antifreeze protein complements cryoprotective dehydration in the freeze-avoiding springtail Megaphorura arctica. Graham LA; Boddington ME; Holmstrup M; Davies PL Sci Rep; 2020 Feb; 10(1):3047. PubMed ID: 32080305 [TBL] [Abstract][Full Text] [Related]
8. Candidate gene expression associated with geographical variation in cryoprotective dehydration of Megaphorura arctica. Sørensen JG; Holmstrup M J Insect Physiol; 2013 Aug; 59(8):804-11. PubMed ID: 23707356 [TBL] [Abstract][Full Text] [Related]
9. Cryoprotective dehydration is widespread in Arctic springtails. Sørensen JG; Holmstrup M J Insect Physiol; 2011 Aug; 57(8):1147-53. PubMed ID: 21396373 [TBL] [Abstract][Full Text] [Related]
10. Surviving extreme polar winters by desiccation: clues from Arctic springtail (Onychiurus arcticus) EST libraries. Clark MS; Thorne MA; Purać J; Grubor-Lajsić G; Kube M; Reinhardt R; Worland MR BMC Genomics; 2007 Dec; 8():475. PubMed ID: 18154659 [TBL] [Abstract][Full Text] [Related]
11. Dehydration-induced cross tolerance of Belgica antarctica larvae to cold and heat is facilitated by trehalose accumulation. Benoit JB; Lopez-Martinez G; Elnitsky MA; Lee RE; Denlinger DL Comp Biochem Physiol A Mol Integr Physiol; 2009 Apr; 152(4):518-23. PubMed ID: 19141330 [TBL] [Abstract][Full Text] [Related]
12. Dehydration-induced tps gene transcripts from an anhydrobiotic nematode contain novel spliced leaders and encode atypical GT-20 family proteins. Goyal K; Browne JA; Burnell AM; Tunnacliffe A Biochimie; 2005 Jun; 87(6):565-74. PubMed ID: 15935281 [TBL] [Abstract][Full Text] [Related]
13. The protective effect of rapid cold-hardening develops more quickly in frozen versus supercooled larvae of the Antarctic midge, Belgica antarctica. Kawarasaki Y; Teets NM; Denlinger DL; Lee RE J Exp Biol; 2013 Oct; 216(Pt 20):3937-45. PubMed ID: 23868837 [TBL] [Abstract][Full Text] [Related]
15. Investigating trehalose synthesis genes after cold acclimation in the Antarctic nematode Seybold AC; Wharton DA; Thorne MAS; Marshall CJ Biol Open; 2017 Dec; 6(12):1953-1959. PubMed ID: 29175859 [No Abstract] [Full Text] [Related]
16. Cold hardening processes in the Antarctic springtail, Cryptopygus antarcticus: clues from a microarray. Purać J; Burns G; Thorne MA; Grubor-Lajsić G; Worland MR; Clark MS J Insect Physiol; 2008 Sep; 54(9):1356-62. PubMed ID: 18703067 [TBL] [Abstract][Full Text] [Related]
17. Expression of aquaporins in response to distinct dehydration stresses that confer stress tolerance in the Antarctic midge Belgica antarctica. Yoshida M; Lee RE; Denlinger DL; Goto SG Comp Biochem Physiol A Mol Integr Physiol; 2021 Jun; 256():110928. PubMed ID: 33647463 [TBL] [Abstract][Full Text] [Related]
18. Desiccation stress at sub-zero temperatures in polar terrestrial arthropods. Worland MR; Block W J Insect Physiol; 2003 Mar; 49(3):193-203. PubMed ID: 12769994 [TBL] [Abstract][Full Text] [Related]
19. Expression of genes involved in energy mobilization and osmoprotectant synthesis during thermal and dehydration stress in the Antarctic midge, Belgica antarctica. Teets NM; Kawarasaki Y; Lee RE; Denlinger DL J Comp Physiol B; 2013 Feb; 183(2):189-201. PubMed ID: 22972362 [TBL] [Abstract][Full Text] [Related]