BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

868 related articles for article (PubMed ID: 19622279)

  • 1. Synthesis and characterization of a temperature-responsive biocompatible poly(N-vinylcaprolactam) cryogel: a step towards designing a novel cell scaffold.
    Srivastava A; Kumar A
    J Biomater Sci Polym Ed; 2009; 20(10):1393-415. PubMed ID: 19622279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermoresponsive poly(N-vinylcaprolactam) cryogels: synthesis and its biophysical evaluation for tissue engineering applications.
    Srivastava A; Kumar A
    J Mater Sci Mater Med; 2010 Nov; 21(11):2937-45. PubMed ID: 20625836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designing supermacroporous cryogels based on polyacrylonitrile and a polyacrylamide-chitosan semi-interpenetrating network.
    Jain E; Kumar A
    J Biomater Sci Polym Ed; 2009; 20(7-8):877-902. PubMed ID: 19454158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elastic and macroporous agarose-gelatin cryogels with isotropic and anisotropic porosity for tissue engineering.
    Tripathi A; Kathuria N; Kumar A
    J Biomed Mater Res A; 2009 Sep; 90(3):680-94. PubMed ID: 18563830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and characterization of elastic and macroporous chitosan-gelatin cryogels for tissue engineering.
    Kathuria N; Tripathi A; Kar KK; Kumar A
    Acta Biomater; 2009 Jan; 5(1):406-18. PubMed ID: 18701361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proliferation of chondrocytes on a 3-d modelled macroporous poly(hydroxyethyl methacrylate)-gelatin cryogel.
    Singh D; Tripathi A; Nayak V; Kumar A
    J Biomater Sci Polym Ed; 2011; 22(13):1733-51. PubMed ID: 20843432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Green process to prepare silk fibroin/gelatin biomaterial scaffolds.
    Lu Q; Zhang X; Hu X; Kaplan DL
    Macromol Biosci; 2010 Mar; 10(3):289-98. PubMed ID: 19924684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of supermacroporous monolithic hydrophobic cryogel in capturing of albumin.
    Avcibaşi N; Uygun M; Corman ME; Akgöl S; Denizli A
    Appl Biochem Biotechnol; 2010 Dec; 162(8):2232-43. PubMed ID: 20521122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macroporous interpenetrating cryogel network of poly(acrylonitrile) and gelatin for biomedical applications.
    Jain E; Srivastava A; Kumar A
    J Mater Sci Mater Med; 2009 Dec; 20 Suppl 1():S173-9. PubMed ID: 18597161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficacy of supermacroporous poly(ethylene glycol)-gelatin cryogel matrix for soft tissue engineering applications.
    Sharma A; Bhat S; Nayak V; Kumar A
    Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():298-312. PubMed ID: 25492201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Core-shell nanostructures from single poly(N-vinylcaprolactam) macromolecules: stabilization and visualization.
    Bronstein LM; Kostylev M; Tsvetkova I; Tomaszewski J; Stein B; Makhaeva EE; Okhapkin I; Khokhlov AR
    Langmuir; 2005 Mar; 21(7):2652-5. PubMed ID: 15779928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic evolution of a porous hydroxyapatite-poly(vinylalcohol)-gelatin composite.
    Nayar S; Sinha A
    Colloids Surf B Biointerfaces; 2004 May; 35(1):29-32. PubMed ID: 15261052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocompatible poly(N-vinyllactam)-based materials with environmentally-responsive permeability.
    Kostanski LK; Huang R; Ghosh R; Filipe CD
    J Biomater Sci Polym Ed; 2008; 19(3):275-90. PubMed ID: 18325231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytotoxicity of thermosensitive polymers poly(N-isopropylacrylamide), poly(N-vinylcaprolactam) and amphiphilically modified poly(N-vinylcaprolactam).
    Vihola H; Laukkanen A; Valtola L; Tenhu H; Hirvonen J
    Biomaterials; 2005 Jun; 26(16):3055-64. PubMed ID: 15603800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable hybrid cryogels functionalized with microparticles as supermacroporous multifunctional biomaterial scaffolds.
    Sami H; Kumar A
    J Biomater Sci Polym Ed; 2013; 24(10):1165-84. PubMed ID: 23713421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic fabrication of biocompatible poly(N-vinylcaprolactam)-based microcarriers for modulated thermo-responsive drug release.
    Roh YH; Moon JY; Hong EJ; Kim HU; Shim MS; Bong KW
    Colloids Surf B Biointerfaces; 2018 Dec; 172():380-386. PubMed ID: 30193197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glucose permeable poly (dimethyl siloxane) poly (N-isopropyl acrylamide) interpenetrating networks as ophthalmic biomaterials.
    Liu L; Sheardown H
    Biomaterials; 2005 Jan; 26(3):233-44. PubMed ID: 15262466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and properties of cryogel based on poly(hydroxypropyl methacrylate).
    Zhai M; Ma F; Li J; Wan B; Yu N
    J Biomater Sci Polym Ed; 2018 Aug; 29(12):1401-1425. PubMed ID: 29667520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vascularization of wide pore agarose-gelatin cryogel scaffolds implanted subcutaneously in diabetic and non-diabetic mice.
    Bloch K; Vanichkin A; Damshkaln LG; Lozinsky VI; Vardi P
    Acta Biomater; 2010 Mar; 6(3):1200-5. PubMed ID: 19703598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering three-dimensional macroporous hydroxyethyl methacrylate-alginate-gelatin cryogel for growth and proliferation of lung epithelial cells.
    Singh D; Zo SM; Kumar A; Han SS
    J Biomater Sci Polym Ed; 2013; 24(11):1343-59. PubMed ID: 23796035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 44.