BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

870 related articles for article (PubMed ID: 19622279)

  • 61. Gelatin-fibrinogen cryogel dermal matrices for wound repair: preparation, optimisation and in vitro study.
    Dainiak MB; Allan IU; Savina IN; Cornelio L; James ES; James SL; Mikhalovsky SV; Jungvid H; Galaev IY
    Biomaterials; 2010 Jan; 31(1):67-76. PubMed ID: 19783036
    [TBL] [Abstract][Full Text] [Related]  

  • 62. BSA-modified polyethersulfone membrane: preparation, characterization and biocompatibility.
    Liu Z; Deng X; Wang M; Chen J; Zhang A; Gu Z; Zhao C
    J Biomater Sci Polym Ed; 2009; 20(3):377-97. PubMed ID: 19192362
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Correlation between cryogenic parameters and physico-chemical properties of porous gelatin cryogels.
    Van Vlierberghe S; Dubruel P; Lippens E; Cornelissen M; Schacht E
    J Biomater Sci Polym Ed; 2009; 20(10):1417-38. PubMed ID: 19622280
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Gas-in-liquid foam templating as a method for the production of highly porous scaffolds.
    Barbetta A; Gumiero A; Pecci R; Bedini R; Dentini M
    Biomacromolecules; 2009 Dec; 10(12):3188-92. PubMed ID: 19891500
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Tuning assembly and enzymatic degradation of silk/poly(N-vinylcaprolactam) multilayers via molecular weight and hydrophobicity.
    Espinosa-Dzib A; Chen J; Zavgorodnya O; Kozlovskaya V; Liang X; Kharlampieva E
    Soft Matter; 2015 Jul; 11(25):5133-45. PubMed ID: 26041120
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Atomistic molecular dynamics simulations of the LCST conformational transition in poly(N-vinylcaprolactam) in water.
    Zhelavskyi OS; Kyrychenko A
    J Mol Graph Model; 2019 Jul; 90():51-58. PubMed ID: 31009934
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Drug release characteristics of physically cross-linked thermosensitive poly(N-vinylcaprolactam) hydrogel particles.
    Vihola H; Laukkanen A; Tenhu H; Hirvonen J
    J Pharm Sci; 2008 Nov; 97(11):4783-93. PubMed ID: 18306245
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Synthesis, characterization and surface modification of low moduli poly(ether carbonate urethane)ureas for soft tissue engineering.
    Wang F; Li Z; Lannutti JL; Wagner WR; Guan J
    Acta Biomater; 2009 Oct; 5(8):2901-12. PubMed ID: 19433136
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Porous scaffold of gelatin-starch with nanohydroxyapatite composite processed via novel microwave vacuum drying.
    Sundaram J; Durance TD; Wang R
    Acta Biomater; 2008 Jul; 4(4):932-42. PubMed ID: 18325862
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Molecularly imprinted composite cryogel for albumin depletion from human serum.
    Andaç M; Baydemir G; Yavuz H; Denizli A
    J Mol Recognit; 2012 Nov; 25(11):555-63. PubMed ID: 23108615
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Synthesis and physicochemical analysis of interpenetrating networks containing modified gelatin and poly(ethylene glycol) diacrylate.
    Burmania JA; Martinez-Diaz GJ; Kao WJ
    J Biomed Mater Res A; 2003 Oct; 67(1):224-34. PubMed ID: 14517880
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Synthesis of an agarose-gelatin conjugate for use as a tissue engineering scaffold.
    Sakai S; Hashimoto I; Kawakami K
    J Biosci Bioeng; 2007 Jan; 103(1):22-6. PubMed ID: 17298896
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Protein recognition via ion-coordinated molecularly imprinted supermacroporous cryogels.
    Bereli N; Andaç M; Baydemir G; Say R; Galaev IY; Denizli A
    J Chromatogr A; 2008 May; 1190(1-2):18-26. PubMed ID: 18395214
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Combined Effect of Cryogel Matrix and Temperature-Reversible Soluble-Insoluble Polymer for the Development of in Vitro Human Liver Tissue.
    Kumari J; Karande AA; Kumar A
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):264-77. PubMed ID: 26654271
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A novel affinity disks for bovine serum albumin purification.
    Tuzmen N; Kalburcu T; Uygun DA; Akgol S; Denizli A
    Appl Biochem Biotechnol; 2015 Jan; 175(1):454-68. PubMed ID: 25308615
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Comparative study of gelatin cryogels reinforced with hydroxyapatites with different morphologies and interfacial bonding.
    Gu L; Zhang Y; Zhang L; Huang Y; Zuo D; Cai Q; Yang X
    Biomed Mater; 2020 Mar; 15(3):035012. PubMed ID: 32031987
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Synthesis, characterization and cell compatibility of novel poly(ester urethane)s based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) prepared by melting polymerization.
    Chen Z; Cheng S; Li Z; Xu K; Chen GQ
    J Biomater Sci Polym Ed; 2009; 20(10):1451-71. PubMed ID: 19622282
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The fabrication of cryogel scaffolds incorporated with poloxamer 407 for potential use in the regeneration of the nucleus pulposus.
    Temofeew NA; Hixon KR; McBride-Gagyi SH; Sell SA
    J Mater Sci Mater Med; 2017 Mar; 28(3):36. PubMed ID: 28144848
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Polymeric cryogels are biocompatible, and their biodegradation is independent of oxidative radicals.
    Shakya AK; Holmdahl R; Nandakumar KS; Kumar A
    J Biomed Mater Res A; 2014 Oct; 102(10):3409-18. PubMed ID: 24142798
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Marine collagen-chitosan-fucoidan cryogels as cell-laden biocomposites envisaging tissue engineering.
    Carvalho DN; López-Cebral R; Sousa RO; Alves AL; Reys LL; Silva SS; Oliveira JM; Reis RL; Silva TH
    Biomed Mater; 2020 Sep; 15(5):055030. PubMed ID: 32570224
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 44.