These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

874 related articles for article (PubMed ID: 19622279)

  • 101. Cell proliferation on three-dimensional chitosan-agarose-gelatin cryogel scaffolds for tissue engineering applications.
    Bhat S; Kumar A
    J Biosci Bioeng; 2012 Dec; 114(6):663-70. PubMed ID: 22884715
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Temperature-pH sensitivity of bovine serum albumin protein-microgels based on cross-linked poly(N-isopropylacrylamide-co-acrylic acid).
    Huo D; Li Y; Qian Q; Kobayashi T
    Colloids Surf B Biointerfaces; 2006 Jun; 50(1):36-42. PubMed ID: 16698239
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Injectable, porous, and cell-responsive gelatin cryogels.
    Koshy ST; Ferrante TC; Lewin SA; Mooney DJ
    Biomaterials; 2014 Mar; 35(8):2477-87. PubMed ID: 24345735
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Multi-featured macroporous agarose-alginate cryogel: synthesis and characterization for bioengineering applications.
    Tripathi A; Kumar A
    Macromol Biosci; 2011 Jan; 11(1):22-35. PubMed ID: 21077225
    [TBL] [Abstract][Full Text] [Related]  

  • 105. A terpolymeric hydrogel of hyaluronate-hydroxyethyl acrylate-gelatin methacryloyl with tunable properties as biomaterial.
    Das D; Cho H; Kim N; Pham TTH; Kim IG; Chung EJ; Noh I
    Carbohydr Polym; 2019 Mar; 207():628-639. PubMed ID: 30600048
    [TBL] [Abstract][Full Text] [Related]  

  • 106. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) as an injectable implant system for prevention of post-surgical tissue adhesion.
    Dai ZW; Zou XH; Chen GQ
    Biomaterials; 2009 Jun; 30(17):3075-83. PubMed ID: 19269028
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Drug release from interpenetrating polymer networks based on poly(ethylene glycol) methyl ether acrylate and gelatin.
    Ding F; Hsu SH; Wu DH; Chiang WY
    J Biomater Sci Polym Ed; 2009; 20(5-6):605-18. PubMed ID: 19323879
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Designing of macroporous biocompatible cryogels of PVA-haemoglobin and their water sorption study.
    Bajpai AK; Saini R
    J Mater Sci Mater Med; 2009 Oct; 20(10):2063-74. PubMed ID: 19455407
    [TBL] [Abstract][Full Text] [Related]  

  • 109. The effect of gelatin incorporation into electrospun poly(L-lactide-co-epsilon-caprolactone) fibers on mechanical properties and cytocompatibility.
    Lee J; Tae G; Kim YH; Park IS; Kim SH; Kim SH
    Biomaterials; 2008 Apr; 29(12):1872-9. PubMed ID: 18234330
    [TBL] [Abstract][Full Text] [Related]  

  • 110. Comparison of porous poly (vinyl alcohol)/hydroxyapatite composite cryogels and cryogels immobilized on poly (vinyl alcohol) and polyurethane foams for removal of cadmium.
    Wang X; Min BG
    J Hazard Mater; 2008 Aug; 156(1-3):381-6. PubMed ID: 18262348
    [TBL] [Abstract][Full Text] [Related]  

  • 111. Bioresponsive supramolecular hydrogels for hemostasis, infection control and accelerated dermal wound healing.
    Preman NK; E S SP; Prabhu A; Shaikh SB; C V; Barki RR; Bhandary YP; Rekha PD; Johnson RP
    J Mater Chem B; 2020 Sep; 8(37):8585-8598. PubMed ID: 32820296
    [TBL] [Abstract][Full Text] [Related]  

  • 112. Injectable poly(lactic-co-glycolic) acid scaffolds with in situ pore formation for tissue engineering.
    Krebs MD; Sutter KA; Lin AS; Guldberg RE; Alsberg E
    Acta Biomater; 2009 Oct; 5(8):2847-59. PubMed ID: 19446056
    [TBL] [Abstract][Full Text] [Related]  

  • 113. The effects of pulsed inductively coupled plasma (PICP) on physical properties and biocompatibility of crosslinked gelatin films.
    Prasertsung I; Mongkolnavin R; Kanokpanont S; Damrongsakkul S
    Int J Biol Macromol; 2010 Jan; 46(1):72-8. PubMed ID: 19913572
    [TBL] [Abstract][Full Text] [Related]  

  • 114. Synthesis, characterization, and osteocompatibility evaluation of novel alanine-based polyphosphazenes.
    Nair LS; Lee DA; Bender JD; Barrett EW; Greish YE; Brown PW; Allcock HR; Laurencin CT
    J Biomed Mater Res A; 2006 Jan; 76(1):206-13. PubMed ID: 16265637
    [TBL] [Abstract][Full Text] [Related]  

  • 115. Stimuli-responsive chitosan-graft-poly(N-vinylcaprolactam) as a promising material for controlled hydrophobic drug delivery.
    Prabaharan M; Grailer JJ; Steeber DA; Gong S
    Macromol Biosci; 2008 Sep; 8(9):843-51. PubMed ID: 18504806
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Biocompatibility of soft-templated mesoporous carbons.
    Gencoglu MF; Spurri A; Franko M; Chen J; Hensley DK; Heldt CL; Saha D
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15068-77. PubMed ID: 25144129
    [TBL] [Abstract][Full Text] [Related]  

  • 117. A new method for the production of gelatin microparticles for controlled protein release from porous polymeric scaffolds.
    Ozkizilcik A; Tuzlakoglu K
    J Tissue Eng Regen Med; 2014 Mar; 8(3):242-7. PubMed ID: 22499408
    [TBL] [Abstract][Full Text] [Related]  

  • 118. Hemocompatibility evaluation of poly(diol citrate) in vitro for vascular tissue engineering.
    Motlagh D; Allen J; Hoshi R; Yang J; Lui K; Ameer G
    J Biomed Mater Res A; 2007 Sep; 82(4):907-16. PubMed ID: 17335023
    [TBL] [Abstract][Full Text] [Related]  

  • 119. The calcification potential of cryogel scaffolds incorporated with various forms of hydroxyapatite for bone regeneration.
    Hixon KR; Eberlin CT; Lu T; Neal SM; Case ND; McBride-Gagyi SH; Sell SA
    Biomed Mater; 2017 Mar; 12(2):025005. PubMed ID: 28145891
    [TBL] [Abstract][Full Text] [Related]  

  • 120. Mesoporous calcium silicate for controlled release of bovine serum albumin protein.
    Xue W; Bandyopadhyay A; Bose S
    Acta Biomater; 2009 Jun; 5(5):1686-96. PubMed ID: 19249262
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 44.