These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 19622400)

  • 1. Red blood cell (RBC) membrane proteomics--Part II: Comparative proteomics and RBC patho-physiology.
    Pasini EM; Lutz HU; Mann M; Thomas AW
    J Proteomics; 2010 Jan; 73(3):421-35. PubMed ID: 19622400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Red blood cell (RBC) membrane proteomics--Part I: Proteomics and RBC physiology.
    Pasini EM; Lutz HU; Mann M; Thomas AW
    J Proteomics; 2010 Jan; 73(3):403-20. PubMed ID: 19540949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Challenges for red blood cell biomarker discovery through proteomics.
    Barasa B; Slijper M
    Biochim Biophys Acta; 2014 May; 1844(5):1003-10. PubMed ID: 24129076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The proteome of red cell membranes and vesicles during storage in blood bank conditions.
    Bosman GJ; Lasonder E; Luten M; Roerdinkholder-Stoelwinder B; Novotný VM; Bos H; De Grip WJ
    Transfusion; 2008 May; 48(5):827-35. PubMed ID: 18346024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Red Blood Cells in Clinical Proteomics.
    Carvalho AS; Rodriguez MS; Matthiesen R
    Methods Mol Biol; 2017; 1619():173-181. PubMed ID: 28674885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Red blood cell proteomics.
    Pasini EM; Mann M; Thomas AW
    Transfus Clin Biol; 2010 Sep; 17(3):151-64. PubMed ID: 20655788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative proteomics reveals deficiency of NHE-1 (Slc9a1) in RBCs from the beta-adducin knockout mouse model of hemolytic anemia.
    Gilligan DM; Finney GL; Rynes E; Maccoss MJ; Lambert AJ; Peters LL; Robledo RF; Wooden JM
    Blood Cells Mol Dis; 2011 Aug; 47(2):85-94. PubMed ID: 21592827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative comparative analysis of human erythrocyte surface proteins between individuals from two genetically distinct populations.
    Ravenhill BJ; Kanjee U; Ahouidi A; Nobre L; Williamson J; Goldberg JM; Antrobus R; Dieye T; Duraisingh MT; Weekes MP
    Commun Biol; 2019; 2():350. PubMed ID: 31552303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative proteomics of erythrocyte aging in vivo and in vitro.
    Bosman GJ; Lasonder E; Groenen-Döpp YA; Willekens FL; Werre JM; Novotný VM
    J Proteomics; 2010 Jan; 73(3):396-402. PubMed ID: 19660581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Whole Blood Storage in CPDA1 Blood Bags Alters Erythrocyte Membrane Proteome.
    Al-Thani AM; Voss SC; Al-Menhali AS; Barcaru A; Horvatovich P; Al Jaber H; Nikolovski Z; Latiff A; Georgakopoulos C; Merenkov Z; Segura J; Alsayrafi M; Jaganjac M
    Oxid Med Cell Longev; 2018; 2018():6375379. PubMed ID: 30533175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alterations of red blood cell shape and sialic acid membrane content in septic patients.
    Piagnerelli M; Boudjeltia KZ; Brohee D; Piro P; Carlier E; Vincent JL; Lejeune P; Vanhaeverbeek M
    Crit Care Med; 2003 Aug; 31(8):2156-62. PubMed ID: 12973174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemistry of storage lesions of red cell and platelet concentrates: A continuous fight implying oxidative/nitrosative/phosphorylative stress and signaling.
    Rinalducci S; Zolla L
    Transfus Apher Sci; 2015 Jun; 52(3):262-9. PubMed ID: 25910536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alterations of the erythrocyte membrane proteome and cytoskeleton network during storage--a possible tool to identify autologous blood transfusion.
    Nikolovski Z; De La Torre C; Chiva C; Borràs E; Andreu D; Ventura R; Segura J
    Drug Test Anal; 2012 Nov; 4(11):882-90. PubMed ID: 22544525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Red blood cell (RBC) age at collection and storage influences RBC membrane-associated carbohydrates and lectin binding.
    Sparrow RL; Veale MF; Healey G; Payne KA
    Transfusion; 2007 Jun; 47(6):966-8. PubMed ID: 17524084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic analysis of red blood cells and the potential for the clinic: what have we learned so far?
    D'Alessandro A; Zolla L
    Expert Rev Proteomics; 2017 Mar; 14(3):243-252. PubMed ID: 28162022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-depth analysis of cysteine oxidation by the RBC proteome: advantage of peroxiredoxin II knockout mice.
    Yang HY; Kwon J; Choi HI; Park SH; Yang U; Park HR; Ren L; Chung KJ; Kim YU; Park BJ; Jeong SH; Lee TH
    Proteomics; 2012 Jan; 12(1):101-12. PubMed ID: 22113967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Critical role of phosphatidylserine in hemolysis due to red blood cell enzyme/membrane defects].
    Kanno H
    Nihon Rinsho; 2008 Mar; 66(3):461-8. PubMed ID: 18330023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Red blood cell dynamics: from cell deformation to ATP release.
    Wan J; Forsyth AM; Stone HA
    Integr Biol (Camb); 2011 Oct; 3(10):972-81. PubMed ID: 21935538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic analysis of supernatants of stored red blood cell products.
    Anniss AM; Glenister KM; Killian JJ; Sparrow RL
    Transfusion; 2005 Sep; 45(9):1426-33. PubMed ID: 16131374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomics and transfusion medicine: future perspectives.
    Queloz PA; Thadikkaran L; Crettaz D; Rossier JS; Barelli S; Tissot JD
    Proteomics; 2006 Oct; 6(20):5605-14. PubMed ID: 16972297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.