These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 19622851)

  • 1. Characteristics of time-domain optical coherence tomography profiles generated from blood-saline mixtures.
    Popescu DP; Sowa MG
    Phys Med Biol; 2009 Aug; 54(15):4759-75. PubMed ID: 19622851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple and dependent scattering effects in Doppler optical coherence tomography.
    Kalkman J; Bykov AV; Faber DJ; van Leeuwen TG
    Opt Express; 2010 Feb; 18(4):3883-92. PubMed ID: 20389399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple scattering effects in Doppler optical coherence tomography of flowing blood.
    Kalkman J; Bykov AV; Streekstra GJ; van Leeuwen TG
    Phys Med Biol; 2012 Apr; 57(7):1907-17. PubMed ID: 22421380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Added soft tissue contrast using signal attenuation and the fractal dimension for optical coherence tomography images of porcine arterial tissue.
    Flueraru C; Popescu DP; Mao Y; Chang S; Sowa MG
    Phys Med Biol; 2010 Apr; 55(8):2317-31. PubMed ID: 20360632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical coherence tomography: a noninvasive method to assess wound reepithelialization.
    Singer AJ; Wang Z; McClain SA; Pan Y
    Acad Emerg Med; 2007 May; 14(5):387-91. PubMed ID: 17363766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crosstalk rejection in parallel optical coherence tomography using spatially incoherent illumination with partially coherent sources.
    Dhalla AH; Migacz JV; Izatt JA
    Opt Lett; 2010 Jul; 35(13):2305-7. PubMed ID: 20596228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast dispersion encoded full range optical coherence tomography for retinal imaging at 800 nm and 1060 nm.
    Hofer B; Povazay B; Unterhuber A; Wang L; Hermann B; Rey S; Matz G; Drexler W
    Opt Express; 2010 Mar; 18(5):4898-919. PubMed ID: 20389502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A model for the effect of disturbances in the optical media on the OCT image quality.
    Kok PH; van Dijk HW; van den Berg TJ; Verbraak FD
    Invest Ophthalmol Vis Sci; 2009 Feb; 50(2):787-92. PubMed ID: 18775857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo study of glucose-induced changes in skin properties assessed with optical coherence tomography.
    Kuranov RV; Sapozhnikova VV; Prough DS; Cicenaite I; Esenaliev RO
    Phys Med Biol; 2006 Aug; 51(16):3885-900. PubMed ID: 16885613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of flowing blood optical property under various fibrinogen levels using optical coherence tomography.
    Fu F; Xu X; Geng J
    IEEE Trans Biomed Eng; 2012 Sep; 59(9):2613-8. PubMed ID: 22801485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A model of speckle contrast in optical coherence tomography for characterizing the scattering coefficient of homogenous tissues.
    Li Z; Li H; He Y; Cai S; Xie S
    Phys Med Biol; 2008 Oct; 53(20):5859-66. PubMed ID: 18827323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Velocity profiles in the rat cerebral microvessels measured by optical coherence tomography.
    Seki J; Satomura Y; Ooi Y; Yanagida T; Seiyama A
    Clin Hemorheol Microcirc; 2006; 34(1-2):233-9. PubMed ID: 16543642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The modulation transfer function of an optical coherence tomography imaging system in turbid media.
    Woolliams PD; Tomlins PH
    Phys Med Biol; 2011 May; 56(9):2855-71. PubMed ID: 21478570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An automatic algorithm for detecting stent endothelialization from volumetric optical coherence tomography datasets.
    Bonnema GT; Cardinal KO; Williams SK; Barton JK
    Phys Med Biol; 2008 Jun; 53(12):3083-98. PubMed ID: 18495980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AM-FM techniques in the analysis of optical coherence tomography signals.
    Pitris C; Kartakoullis A; Bousi E
    J Biophotonics; 2009 Jul; 2(6-7):364-9. PubMed ID: 19551909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitivity and specificity of time-domain versus spectral-domain optical coherence tomography in diagnosing early to moderate glaucoma.
    Chang RT; Knight OJ; Feuer WJ; Budenz DL
    Ophthalmology; 2009 Dec; 116(12):2294-9. PubMed ID: 19800694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues.
    Wang RK
    Phys Med Biol; 2002 Jul; 47(13):2281-99. PubMed ID: 12164587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of multiple scattering in optical coherence tomography by speckle correlation of angle-dependent B-scans.
    Hillman TR; Curatolo A; Kennedy BF; Sampson DD
    Opt Lett; 2010 Jun; 35(12):1998-2000. PubMed ID: 20548365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Swept source optical coherence tomography for radiation-enhanced hepatocellular carcinoma cell invasion imaging.
    Kuo WC; Chan CH; Chou CH; Cheng JC
    Phys Med Biol; 2009 Jul; 54(13):4289-97. PubMed ID: 19531848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three- and four-dimensional visualization of cell migration using optical coherence tomography.
    Rey SM; Povazay B; Hofer B; Unterhuber A; Hermann B; Harwood A; Drexler W
    J Biophotonics; 2009 Jul; 2(6-7):370-9. PubMed ID: 19475627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.