These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
328 related articles for article (PubMed ID: 19623260)
21. Hypocretin (orexin): role in normal behavior and neuropathology. Siegel JM Annu Rev Psychol; 2004; 55():125-48. PubMed ID: 14744212 [TBL] [Abstract][Full Text] [Related]
22. Hypocretin (orexin) is critical in sustaining theta/gamma-rich waking behaviors that drive sleep need. Vassalli A; Franken P Proc Natl Acad Sci U S A; 2017 Jul; 114(27):E5464-E5473. PubMed ID: 28630298 [No Abstract] [Full Text] [Related]
23. Effects of hypocretin2-saporin and antidopamine-beta-hydroxylase-saporin neurotoxic lesions of the dorsolateral pons on sleep and muscle tone. Blanco-Centurion C; Gerashchenko D; Salin-Pascual RJ; Shiromani PJ Eur J Neurosci; 2004 May; 19(10):2741-52. PubMed ID: 15147308 [TBL] [Abstract][Full Text] [Related]
24. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Adamantidis AR; Zhang F; Aravanis AM; Deisseroth K; de Lecea L Nature; 2007 Nov; 450(7168):420-4. PubMed ID: 17943086 [TBL] [Abstract][Full Text] [Related]
25. Prepro-hypocretin (prepro-orexin) expression is unaffected by short-term sleep deprivation in rats and mice. Terao A; Peyron C; Ding J; Wurts SW; Edgar DM; Heller HC; Kilduff TS Sleep; 2000 Nov; 23(7):867-74. PubMed ID: 11083595 [TBL] [Abstract][Full Text] [Related]
26. Rapid eye movement sleep behavior disorder and rapid eye movement sleep without atonia in narcolepsy. Dauvilliers Y; Jennum P; Plazzi G Sleep Med; 2013 Aug; 14(8):775-81. PubMed ID: 23219054 [TBL] [Abstract][Full Text] [Related]
27. Survival rates through time of hypocretin grafted neurons within their projection site. Arias-Carrión O; Drucker-Colín R; Murillo-Rodríguez E Neurosci Lett; 2006 Aug; 404(1-2):93-7. PubMed ID: 16762505 [TBL] [Abstract][Full Text] [Related]
28. Distinct narcolepsy syndromes in Orexin receptor-2 and Orexin null mice: molecular genetic dissection of Non-REM and REM sleep regulatory processes. Willie JT; Chemelli RM; Sinton CM; Tokita S; Williams SC; Kisanuki YY; Marcus JN; Lee C; Elmquist JK; Kohlmeier KA; Leonard CS; Richardson JA; Hammer RE; Yanagisawa M Neuron; 2003 Jun; 38(5):715-30. PubMed ID: 12797957 [TBL] [Abstract][Full Text] [Related]
29. Genetic ablation of hypocretin neurons alters behavioral state transitions in zebrafish. Elbaz I; Yelin-Bekerman L; Nicenboim J; Vatine G; Appelbaum L J Neurosci; 2012 Sep; 32(37):12961-72. PubMed ID: 22973020 [TBL] [Abstract][Full Text] [Related]
30. Mechanism for Hypocretin-mediated sleep-to-wake transitions. Carter ME; Brill J; Bonnavion P; Huguenard JR; Huerta R; de Lecea L Proc Natl Acad Sci U S A; 2012 Sep; 109(39):E2635-44. PubMed ID: 22955882 [TBL] [Abstract][Full Text] [Related]
31. Control of cardiovascular variability during undisturbed wake-sleep behavior in hypocretin-deficient mice. Silvani A; Bastianini S; Berteotti C; Lo Martire V; Zoccoli G Am J Physiol Regul Integr Comp Physiol; 2012 Apr; 302(8):R958-64. PubMed ID: 22357806 [TBL] [Abstract][Full Text] [Related]
32. Sleep and cardiovascular phenotype in middle-aged hypocretin-deficient narcoleptic mice. Silvani A; Bastianini S; Berteotti C; Cenacchi G; Leone O; Lo Martire V; Papa V; Zoccoli G J Sleep Res; 2014 Feb; 23(1):98-106. PubMed ID: 24033681 [TBL] [Abstract][Full Text] [Related]
33. Behavioral state instability in orexin knock-out mice. Mochizuki T; Crocker A; McCormack S; Yanagisawa M; Sakurai T; Scammell TE J Neurosci; 2004 Jul; 24(28):6291-300. PubMed ID: 15254084 [TBL] [Abstract][Full Text] [Related]
34. High-amplitude theta wave bursts during REM sleep and cataplexy in hypocretin-deficient narcoleptic mice. Bastianini S; Silvani A; Berteotti C; Lo Martire V; Zoccoli G J Sleep Res; 2012 Apr; 21(2):185-8. PubMed ID: 21883592 [TBL] [Abstract][Full Text] [Related]
35. Hypocretin/orexin neurons contribute to hippocampus-dependent social memory and synaptic plasticity in mice. Yang L; Zou B; Xiong X; Pascual C; Xie J; Malik A; Xie J; Sakurai T; Xie XS J Neurosci; 2013 Mar; 33(12):5275-84. PubMed ID: 23516292 [TBL] [Abstract][Full Text] [Related]
36. Sleep-wake regulation and hypocretin-melatonin interaction in zebrafish. Appelbaum L; Wang GX; Maro GS; Mori R; Tovin A; Marin W; Yokogawa T; Kawakami K; Smith SJ; Gothilf Y; Mignot E; Mourrain P Proc Natl Acad Sci U S A; 2009 Dec; 106(51):21942-7. PubMed ID: 19966231 [TBL] [Abstract][Full Text] [Related]
37. A circuit perspective on narcolepsy. Adamantidis AR; Schmidt MH; Carter ME; Burdakov D; Peyron C; Scammell TE Sleep; 2020 May; 43(5):. PubMed ID: 31919524 [TBL] [Abstract][Full Text] [Related]
38. GABA-mediated control of hypocretin- but not melanin-concentrating hormone-immunoreactive neurones during sleep in rats. Alam MN; Kumar S; Bashir T; Suntsova N; Methippara MM; Szymusiak R; McGinty D J Physiol; 2005 Mar; 563(Pt 2):569-82. PubMed ID: 15613374 [TBL] [Abstract][Full Text] [Related]
39. Hypocretin/Orexin: a molecular link between sleep, energy regulation, and pleasure. Ganjavi H; Shapiro CM J Neuropsychiatry Clin Neurosci; 2007; 19(4):413-9. PubMed ID: 18070844 [TBL] [Abstract][Full Text] [Related]
40. Validation of the ICSD-2 criteria for CSF hypocretin-1 measurements in the diagnosis of narcolepsy in the Danish population. Knudsen S; Jennum PJ; Alving J; Sheikh SP; Gammeltoft S Sleep; 2010 Feb; 33(2):169-76. PubMed ID: 20175400 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]