BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 19623261)

  • 1. KCNE1 and KCNE3 beta-subunits regulate membrane surface expression of Kv12.2 K(+) channels in vitro and form a tripartite complex in vivo.
    Clancy SM; Chen B; Bertaso F; Mamet J; Jegla T
    PLoS One; 2009 Jul; 4(7):e6330. PubMed ID: 19623261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sexual dimorphism and oestrogen regulation of KCNE3 expression modulates the functional properties of KCNQ1 K⁺ channels.
    Alzamora R; O'Mahony F; Bustos V; Rapetti-Mauss R; Urbach V; Cid LP; Sepúlveda FV; Harvey BJ
    J Physiol; 2011 Nov; 589(Pt 21):5091-107. PubMed ID: 21911611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation and properties of KCNQ1 (K(V)LQT1) and impact of the cystic fibrosis transmembrane conductance regulator.
    Boucherot A; Schreiber R; Kunzelmann K
    J Membr Biol; 2001 Jul; 182(1):39-47. PubMed ID: 11426298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. KCNE3 truncation mutants reveal a bipartite modulation of KCNQ1 K+ channels.
    Gage SD; Kobertz WR
    J Gen Physiol; 2004 Dec; 124(6):759-71. PubMed ID: 15572349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. KCNE1 and KCNE3 modulate KCNQ1 channels by affecting different gating transitions.
    Barro-Soria R; Ramentol R; Liin SI; Perez ME; Kass RS; Larsson HP
    Proc Natl Acad Sci U S A; 2017 Aug; 114(35):E7367-E7376. PubMed ID: 28808020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. KCNE peptides differently affect voltage sensor equilibrium and equilibration rates in KCNQ1 K+ channels.
    Rocheleau JM; Kobertz WR
    J Gen Physiol; 2008 Jan; 131(1):59-68. PubMed ID: 18079560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA interference reveals that endogenous Xenopus MinK-related peptides govern mammalian K+ channel function in oocyte expression studies.
    Anantharam A; Lewis A; Panaghie G; Gordon E; McCrossan ZA; Lerner DJ; Abbott GW
    J Biol Chem; 2003 Apr; 278(14):11739-45. PubMed ID: 12529362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ancillary subunits and stimulation frequency determine the potency of chromanol 293B block of the KCNQ1 potassium channel.
    Bett GC; Morales MJ; Beahm DL; Duffey ME; Rasmusson RL
    J Physiol; 2006 Nov; 576(Pt 3):755-67. PubMed ID: 16887873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. KCNE1 and KCNE3: The yin and yang of voltage-gated K(+) channel regulation.
    Abbott GW
    Gene; 2016 Jan; 576(1 Pt 1):1-13. PubMed ID: 26410412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. KCNQ1 subdomains involved in KCNE modulation revealed by an invertebrate KCNQ1 orthologue.
    Nakajo K; Nishino A; Okamura Y; Kubo Y
    J Gen Physiol; 2011 Nov; 138(5):521-35. PubMed ID: 22042987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. External pH modulates EAG superfamily K+ channels through EAG-specific acidic residues in the voltage sensor.
    Kazmierczak M; Zhang X; Chen B; Mulkey DK; Shi Y; Wagner PG; Pivaroff-Ward K; Sassic JK; Bayliss DA; Jegla T
    J Gen Physiol; 2013 Jun; 141(6):721-35. PubMed ID: 23712551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. KCNE1 and KCNE3 stabilize and/or slow voltage sensing S4 segment of KCNQ1 channel.
    Nakajo K; Kubo Y
    J Gen Physiol; 2007 Sep; 130(3):269-81. PubMed ID: 17698596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Triple N-glycosylation in the long S5-P loop regulates the activation and trafficking of the Kv12.2 potassium channel.
    Noma K; Kimura K; Minatohara K; Nakashima H; Nagao Y; Mizoguchi A; Fujiyoshi Y
    J Biol Chem; 2009 Nov; 284(48):33139-50. PubMed ID: 19808681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. KCNE variants reveal a critical role of the beta subunit carboxyl terminus in PKA-dependent regulation of the IKs potassium channel.
    Kurokawa J; Bankston JR; Kaihara A; Chen L; Furukawa T; Kass RS
    Channels (Austin); 2009; 3(1):16-24. PubMed ID: 19077539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. KCNE3 acts by promoting voltage sensor activation in KCNQ1.
    Barro-Soria R; Perez ME; Larsson HP
    Proc Natl Acad Sci U S A; 2015 Dec; 112(52):E7286-92. PubMed ID: 26668384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural determinants of KvLQT1 control by the KCNE family of proteins.
    Melman YF; Domènech A; de la Luna S; McDonald TV
    J Biol Chem; 2001 Mar; 276(9):6439-44. PubMed ID: 11104781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. KCNE4 domains required for inhibition of KCNQ1.
    Manderfield LJ; Daniels MA; Vanoye CG; George AL
    J Physiol; 2009 Jan; 587(2):303-14. PubMed ID: 19029186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A single transmembrane site in the KCNE-encoded proteins controls the specificity of KvLQT1 channel gating.
    Melman YF; Krumerman A; McDonald TV
    J Biol Chem; 2002 Jul; 277(28):25187-94. PubMed ID: 11994278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutation of colocalized residues of the pore helix and transmembrane segments S5 and S6 disrupt deactivation and modify inactivation of KCNQ1 K+ channels.
    Seebohm G; Westenskow P; Lang F; Sanguinetti MC
    J Physiol; 2005 Mar; 563(Pt 2):359-68. PubMed ID: 15649981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. KCNE3 is an inhibitory subunit of the Kv4.3 potassium channel.
    Lundby A; Olesen SP
    Biochem Biophys Res Commun; 2006 Aug; 346(3):958-67. PubMed ID: 16782062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.