BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 19623390)

  • 1. Ruthenium based catalysts for olefin hydrosilylation: dichloro(p-cymene)ruthenium and related complexes.
    Tuttle T; Wang D; Thiel W; Köhler J; Hofmann M; Weis J
    Dalton Trans; 2009 Aug; (30):5894-901. PubMed ID: 19623390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative structure-activity relationships of ruthenium catalysts for olefin metathesis.
    Occhipinti G; Bjørsvik HR; Jensen VR
    J Am Chem Soc; 2006 May; 128(21):6952-64. PubMed ID: 16719476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ring-closing olefin metathesis on ruthenium carbene complexes: model DFT study of stereochemistry.
    Vyboishchikov SF; Thiel W
    Chemistry; 2005 Jun; 11(13):3921-35. PubMed ID: 15838859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic hydrosilylation of olefins with organolanthanide complexes: a DFT study. Part II: Influence of the substitution on olefin and silane.
    Barros N; Eisenstein O; Maron L
    Dalton Trans; 2010 Nov; 39(44):10757-67. PubMed ID: 20936209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron vs. ruthenium--a comparison of the stereoselectivity in catalytic olefin epoxidation.
    Benet-Buchholz J; Comba P; Llobet A; Roeser S; Vadivelu P; Wadepohl H; Wiesner S
    Dalton Trans; 2009 Aug; (30):5910-23. PubMed ID: 19623392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mononuclear ruthenium(II) complexes that catalyze water oxidation.
    Tseng HW; Zong R; Muckerman JT; Thummel R
    Inorg Chem; 2008 Dec; 47(24):11763-73. PubMed ID: 19006384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental and theoretical investigations on the catalytic hydrosilylation of carbon dioxide with ruthenium nitrile complexes.
    Deglmann P; Ember E; Hofmann P; Pitter S; Walter O
    Chemistry; 2007; 13(10):2864-79. PubMed ID: 17177213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Allenylidene-to-indenylidene rearrangement in arene-ruthenium complexes: a key step to highly active catalysts for olefin metathesis reactions.
    Castarlenas R; Vovard C; Fischmeister C; Dixneuf PH
    J Am Chem Soc; 2006 Mar; 128(12):4079-89. PubMed ID: 16551117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting the cis-trans dichloro configuration of group 15-16 chelated ruthenium olefin metathesis complexes: a DFT and experimental study.
    Diesendruck CE; Tzur E; Ben-Asuly A; Goldberg I; Straub BF; Lemcoff NG
    Inorg Chem; 2009 Nov; 48(22):10819-25. PubMed ID: 19842708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DFT mechanistic study on diene metathesis catalyzed by Ru-based Grubbs-Hoveyda-type carbenes: the key role of pi-electron density delocalization in the Hoveyda ligand.
    Solans-Monfort X; Pleixats R; Sodupe M
    Chemistry; 2010 Jun; 16(24):7331-43. PubMed ID: 20461831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. C-C bond formation via C-H bond activation using an in situ-generated ruthenium catalyst.
    Martinez R; Simon MO; Chevalier R; Pautigny C; Genet JP; Darses S
    J Am Chem Soc; 2009 Jun; 131(22):7887-95. PubMed ID: 19449877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring new generations of ruthenium olefin metathesis catalysts: the reactivity of a bis-ylidene ruthenium complex by DFT.
    Poater A; Credendino R; Slugovc C; Cavallo L
    Dalton Trans; 2013 May; 42(20):7271-5. PubMed ID: 23426093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unveiling how stereoelectronic factors affect kinetics and thermodynamics of protonation regiochemistry in [FeFe] hydrogenase synthetic models: a DFT investigation.
    Zampella G; Fantucci P; De Gioia L
    J Am Chem Soc; 2009 Aug; 131(31):10909-17. PubMed ID: 19621919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel half-sandwich Ru(II)-hydroxamate complexes: synthesis, characterization and equilibrium study in aqueous solution.
    Buglyó P; Farkas E
    Dalton Trans; 2009 Oct; (38):8063-70. PubMed ID: 19771370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ruthenium catalyzed selective hydrosilylation of aldehydes.
    Chatterjee B; Gunanathan C
    Chem Commun (Camb); 2014 Jan; 50(7):888-90. PubMed ID: 24301383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substituent effects and the mechanism of alkene metathesis catalyzed by ruthenium dichloride catalysts.
    Tsipis AC; Orpen AG; Harvey JN
    Dalton Trans; 2005 Sep; (17):2849-58. PubMed ID: 16094473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Ru-Hbpp-based water-oxidation catalyst anchored on rutile TiO2.
    Francàs L; Sala X; Benet-Buchholz J; Escriche L; Llobet A
    ChemSusChem; 2009; 2(4):321-9. PubMed ID: 19308921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical, linear optical, and nonlinear optical properties and interpretation by density functional theory calculations of (4-N,N-dimethylaminostyryl)-pyridinium pendant group associated with polypyridinic ligands and respective multifunctional metal complexes (Ru(II) or Zn(II)).
    Dumur F; Mayer CR; Hoang-Thi K; Ledoux-Rak I; Miomandre F; Clavier G; Dumas E; Méallet-Renault R; Frigoli M; Zyss J; Sécheresse F
    Inorg Chem; 2009 Sep; 48(17):8120-33. PubMed ID: 19642646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuning the hydrophobicity of ruthenium(II)-arene (RAPTA) drugs to modify uptake, biomolecular interactions and efficacy.
    Scolaro C; Chaplin AB; Hartinger CG; Bergamo A; Cocchietto M; Keppler BK; Sava G; Dyson PJ
    Dalton Trans; 2007 Nov; (43):5065-72. PubMed ID: 17992291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extending ligand field molecular mechanics to modelling organometallic π-bonded systems: applications to ruthenium-arenes.
    Brodbeck R; Deeth RJ
    Dalton Trans; 2011 Nov; 40(42):11147-55. PubMed ID: 21792446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.