BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

992 related articles for article (PubMed ID: 19623392)

  • 1. Iron vs. ruthenium--a comparison of the stereoselectivity in catalytic olefin epoxidation.
    Benet-Buchholz J; Comba P; Llobet A; Roeser S; Vadivelu P; Wadepohl H; Wiesner S
    Dalton Trans; 2009 Aug; (30):5910-23. PubMed ID: 19623392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epoxidation and 1,2-dihydroxylation of alkenes by a nonheme iron model system - DFT supports the mechanism proposed by experiment.
    Comba P; Rajaraman G
    Inorg Chem; 2008 Jan; 47(1):78-93. PubMed ID: 18072762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New ru(II) complexes containing oxazoline ligands as epoxidation catalysts. Influence of the substituents on the catalytic performance.
    Serrano I; López MI; Ferrer Í; Poater A; Parella T; Fontrodona X; Solà M; Llobet A; Rodríguez M; Romero I
    Inorg Chem; 2011 Jul; 50(13):6044-54. PubMed ID: 21650155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Is the ruthenium analogue of compound I of cytochrome p450 an efficient oxidant? A theoretical investigation of the methane hydroxylation reaction.
    Sharma PK; De Visser SP; Ogliaro F; Shaik S
    J Am Chem Soc; 2003 Feb; 125(8):2291-300. PubMed ID: 12590559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Olefin cis-dihydroxylation with bio-inspired iron catalysts. evidence for an Fe(II)/Fe(IV) catalytic cycle.
    Oldenburg PD; Feng Y; Pryjomska-Ray I; Ness D; Que L
    J Am Chem Soc; 2010 Dec; 132(50):17713-23. PubMed ID: 21105649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis, structure, and catalytic activity of mononuclear iron and (mu-Oxo)diiron complexes with the ligand 2,6-bis(N-methylbenzimidazol-2-yl)pyridine.
    Wang X; Wang S; Li L; Sundberg EB; Gacho GP
    Inorg Chem; 2003 Dec; 42(24):7799-808. PubMed ID: 14632495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy-gaining formation and catalytic behavior of active structures in a SiO(2)-supported unsaturated Ru complex catalyst for alkene epoxidation by DFT calculations.
    Coquet R; Tada M; Iwasawa Y
    Phys Chem Chem Phys; 2007 Dec; 9(45):6040-6. PubMed ID: 18004419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ruthenium-based olefin metathesis catalysts coordinated with unsymmetrical N-heterocyclic carbene ligands: synthesis, structure, and catalytic activity.
    Vougioukalakis GC; Grubbs RH
    Chemistry; 2008; 14(25):7545-56. PubMed ID: 18637651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical studies of the complex [(BPMEN)Fe(II)(NCCH3)2](2+), precursor of non-heme iron catalysts for olefin epoxidation and cis-dihydroxylation.
    Quiñonero D; Musaev DG; Morokuma K
    Inorg Chem; 2003 Dec; 42(25):8449-55. PubMed ID: 14658899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New Ru(II) complexes with anionic and neutral N-donor ligands as epoxidation catalysts: an evaluation of geometrical and electronic effects.
    Dakkach M; López MI; Romero I; Rodríguez M; Atlamsani A; Parella T; Fontrodona X; Llobet A
    Inorg Chem; 2010 Aug; 49(15):7072-9. PubMed ID: 20597481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ligand topology effects on olefin oxidations by bio-inspired [FeII(N2Py2)] catalysts.
    Mas-Ballesté R; Costas M; van den Berg T; Que L
    Chemistry; 2006 Sep; 12(28):7489-500. PubMed ID: 16871511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Axial ligand effects: utilization of chiral sulfoxide additives for the induction of asymmetry in (salen)ruthenium(II) olefin cyclopropanation catalysts.
    Miller JA; Gross BA; Zhuravel MA; Jin W; Nguyen ST
    Angew Chem Int Ed Engl; 2005 Jun; 44(25):3885-9. PubMed ID: 15900537
    [No Abstract]   [Full Text] [Related]  

  • 13. Rapidly initiating ruthenium olefin-metathesis catalysts.
    Romero PE; Piers WE; McDonald R
    Angew Chem Int Ed Engl; 2004 Nov; 43(45):6161-5. PubMed ID: 15549743
    [No Abstract]   [Full Text] [Related]  

  • 14. Theoretical study of photoinduced epoxidation of olefins catalyzed by ruthenium porphyrin.
    Ishikawa A; Sakaki S
    J Phys Chem A; 2011 May; 115(18):4774-85. PubMed ID: 21495703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly efficient and selective epoxidation of alkenes by photochemical oxygenation sensitized by a ruthenium(II) porphyrin with water as both electron and oxygen donor.
    Funyu S; Isobe T; Takagi S; Tryk DA; Inoue H
    J Am Chem Soc; 2003 May; 125(19):5734-40. PubMed ID: 12733912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron(II) complexes with bio-inspired N,N,O ligands as oxidation catalysts: olefin epoxidation and cis-dihydroxylation.
    Bruijnincx PC; Buurmans IL; Gosiewska S; Moelands MA; Lutz M; Spek AL; van Koten G; Klein Gebbink RJ
    Chemistry; 2008; 14(4):1228-37. PubMed ID: 18022966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalysts for new tasks: preparation and applications of tunable ruthenium catalysts for olefin metathesis.
    Grela K; Michrowska A; Bieniek M
    Chem Rec; 2006; 6(3):144-56. PubMed ID: 16795007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Paramagnetic 1H-NMR relaxation probes of stereoselectivity in metalloporphyrin catalyzed olefin epoxidation.
    Groves JT; Crowley SJ; Shalyaev KV
    Chirality; 1998; 10(1-2):106-19. PubMed ID: 9470210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stereo- and enantioselective alkene epoxidations: a comparative study of D4- and D2-symmetric homochiral trans-dioxoruthenium(VI) porphyrins.
    Zhang R; Yu WY; Sun HZ; Liu WS; Che CM
    Chemistry; 2002 Jun; 8(11):2495-507. PubMed ID: 12180328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Model compounds of ruthenium-alkene intermediates in olefin metathesis reactions.
    Anderson DR; Hickstein DD; O'Leary DJ; Grubbs RH
    J Am Chem Soc; 2006 Jul; 128(26):8386-7. PubMed ID: 16802789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 50.