These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 1962364)

  • 1. Identifying acoustic scattering sources in normal renal parenchyma from the anisotropy in acoustic properties.
    Insana MF; Hall TJ; Fishback JL
    Ultrasound Med Biol; 1991; 17(6):613-26. PubMed ID: 1962364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying acoustic scattering sources in normal renal parenchyma in vivo by varying arterial and ureteral pressures.
    Insana MF; Wood JG; Hall TJ
    Ultrasound Med Biol; 1992; 18(6-7):587-99. PubMed ID: 1413270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of anisotropic myocardial backscatter using spectral slope, intercept and midband fit parameters.
    Yang M; Krueger TM; Miller JG; Holland MR
    Ultrason Imaging; 2007 Apr; 29(2):122-34. PubMed ID: 17679326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A proposed microscopic elastic wave theory for ultrasonic backscatter from myocardial tissue.
    Rose JH; Kaufmann MR; Wickline SA; Hall CS; Miller JG
    J Acoust Soc Am; 1995 Jan; 97(1):656-68. PubMed ID: 7860840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The acoustic properties, centered on 20 MHZ, of an IEC agar-based tissue-mimicking material and its temperature, frequency and age dependence.
    Brewin MP; Pike LC; Rowland DE; Birch MJ
    Ultrasound Med Biol; 2008 Aug; 34(8):1292-306. PubMed ID: 18343021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling acoustic backscatter from kidney microstructure using an anisotropic correlation function.
    Insana MF
    J Acoust Soc Am; 1995 Jan; 97(1):649-55. PubMed ID: 7860839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anisotropy of ultrasonic propagation and scattering properties in fresh rat skeletal muscle in vitro.
    Topp KA; O'Brien WD
    J Acoust Soc Am; 2000 Feb; 107(2):1027-33. PubMed ID: 10687711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of the frequency dependence of acoustic properties on material, composition, and scatterer size of the medium.
    Ino M; Yoshida K; Hirata S; Ito K; Yamaguchi T
    J Med Ultrason (2001); 2022 Oct; 49(4):569-578. PubMed ID: 36098894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Geometric Model of Ultrasound Backscatter to Describe Microstructural Anisotropy of Tissue.
    Santoso AP; Rosado-Mendez I; Guerrero QW; Hall TJ
    Ultrason Imaging; 2023 Jul; 45(4):206-214. PubMed ID: 37102708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anisotropic ultrasonic backscatter from the renal cortex.
    Rubin JM; Carson PL; Meyer CR
    Ultrasound Med Biol; 1988; 14(6):507-11. PubMed ID: 3067432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of anisotropy and spatial compound imaging on renal cortical echogenicity in dogs.
    Ruth JD; Heng HG; Miller MA; Constable PD
    Vet Radiol Ultrasound; 2013; 54(6):659-65. PubMed ID: 23763283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Angle-dependent backscatter from the arterial wall.
    de Kroon MG; van der Wal LF; Gussenhoven WJ; Bom N
    Ultrasound Med Biol; 1991; 17(2):121-6. PubMed ID: 2053208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of tissue preparation on the high-frequency acoustic properties of normal kidney tissue.
    Sasaki H; Saijo Y; Tanaka M; Okawai H; Terasawa Y; Yambe T; Nitta S
    Ultrasound Med Biol; 1996; 22(9):1261-5. PubMed ID: 9123651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of the ultrasonic properties of vascular tissues and blood from 35-65 MHz.
    Lockwood GR; Ryan LK; Hunt JW; Foster FS
    Ultrasound Med Biol; 1991; 17(7):653-66. PubMed ID: 1781068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acoustic Properties of Small Animal Soft Tissue in the Frequency Range 12-32 MHz.
    Rabell-Montiel A; Thomson AJ; Anderson TA; Pye SD; Moran CM
    Ultrasound Med Biol; 2018 Mar; 44(3):702-713. PubMed ID: 29277451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anisotropy of the ultrasonic backscatter of myocardial tissue: II. Measurements in vivo.
    Madaras EI; Perez J; Sobel BE; Mottley JG; Miller JG
    J Acoust Soc Am; 1988 Feb; 83(2):762-9. PubMed ID: 3351134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural remodeling of human myocardial tissue after infarction. Quantification with ultrasonic backscatter.
    Wickline SA; Verdonk ED; Wong AK; Shepard RK; Miller JG
    Circulation; 1992 Jan; 85(1):259-68. PubMed ID: 1728457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Renal ultrasound using parametric imaging techniques to detect changes in microstructure and function.
    Insana MF; Hall TJ; Wood JG; Yan ZY
    Invest Radiol; 1993 Aug; 28(8):720-5. PubMed ID: 8376004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic properties of dialysed kidney by scanning acoustic microscopy.
    Sasaki H; Saijo Y; Tanaka M; Nitta S; Terasawa Y; Yambe T; Taguma Y
    Nephrol Dial Transplant; 1997 Oct; 12(10):2151-4. PubMed ID: 9351081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anisotropy of the apparent frequency dependence of backscatter in formalin fixed human myocardium.
    Hall CS; Verdonk ED; Wickline SA; Perez JE; Miller JG
    J Acoust Soc Am; 1997 Jan; 101(1):563-8. PubMed ID: 9000744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.