These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 19624173)

  • 1. Mechanism of carbon nanotubes unzipping into graphene ribbons.
    Rangel NL; Sotelo JC; Seminario JM
    J Chem Phys; 2009 Jul; 131(3):031105. PubMed ID: 19624173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sharpening the chemical scissors to unzip carbon nanotubes: crystalline graphene nanoribbons.
    Terrones M
    ACS Nano; 2010 Apr; 4(4):1775-81. PubMed ID: 20420468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. C-BN single-walled nanotubes from hybrid connection of BN/C nanoribbons: prediction by ab initio density functional calculations.
    Du A; Chen Y; Zhu Z; Lu G; Smith SC
    J Am Chem Soc; 2009 Feb; 131(5):1682-3. PubMed ID: 19152268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orientation-selective unzipping of carbon nanotubes.
    Zhang H; Zhao M; He T; Zhang X; Wang Z; Xi Z; Yan S; Liu X; Xia Y; Mei L
    Phys Chem Chem Phys; 2010 Nov; 12(41):13674-80. PubMed ID: 20871869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The non-covalent functionalisation of carbon nanotubes studied by density functional and semi-empirical molecular orbital methods including dispersion corrections.
    McNamara JP; Sharma R; Vincent MA; Hillier IH; Morgado CA
    Phys Chem Chem Phys; 2008 Jan; 10(1):128-35. PubMed ID: 18075691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Density functional theory calculations and molecular dynamics simulations of the adsorption of biomolecules on graphene surfaces.
    Qin W; Li X; Bian WW; Fan XJ; Qi JY
    Biomaterials; 2010 Feb; 31(5):1007-16. PubMed ID: 19880174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical unzipping of multi-walled carbon nanotubes for facile synthesis of high-quality graphene nanoribbons.
    Shinde DB; Debgupta J; Kushwaha A; Aslam M; Pillai VK
    J Am Chem Soc; 2011 Mar; 133(12):4168-71. PubMed ID: 21388198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unzipping carbon nanotubes: a peeling method for the formation of graphene nanoribbons.
    Hirsch A
    Angew Chem Int Ed Engl; 2009; 48(36):6594-6. PubMed ID: 19582752
    [No Abstract]   [Full Text] [Related]  

  • 9. Theoretical study of binding of metal-doped graphene sheet and carbon nanotubes with dioxin.
    Kang HS
    J Am Chem Soc; 2005 Jul; 127(27):9839-43. PubMed ID: 15998088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced binding strength between metal nanoclusters and carbon nanotubes with an atomic nickel defect.
    Sung D; Park N; Kim G; Hong S
    Nanotechnology; 2012 May; 23(20):205204. PubMed ID: 22544038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon nanotube, graphene, nanowire, and molecule-based electron and spin transport phenomena using the nonequilibrium Green's function method at the level of first principles theory.
    Kim WY; Kim KS
    J Comput Chem; 2008 May; 29(7):1073-83. PubMed ID: 18072178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic structure and transport of a carbon chain between graphene nanoribbon leads.
    Zhang GP; Fang XW; Yao YX; Wang CZ; Ding ZJ; Ho KM
    J Phys Condens Matter; 2011 Jan; 23(2):025302. PubMed ID: 21406839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theory of nitrogen doping of carbon nanoribbons: edge effects.
    Jiang J; Turnbull J; Lu W; Boguslawski P; Bernholc J
    J Chem Phys; 2012 Jan; 136(1):014702. PubMed ID: 22239795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of N/B doping on the electronic and field emission properties for carbon nanotubes, carbon nanocones, and graphene nanoribbons.
    Yu SS; Zheng WT
    Nanoscale; 2010 Jul; 2(7):1069-82. PubMed ID: 20648331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electric field induced orientation-selective unzipping of zigzag carbon nanotubes upon oxidation.
    Chen C; Miao L; Xu K; Yao J; Li C; Jiang J
    Phys Chem Chem Phys; 2013 May; 15(17):6431-6. PubMed ID: 23525224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unzipping carbon nanotubes into nanoribbons upon oxidation: a first-principles study.
    Li F; Kan E; Lu R; Xiao C; Deng K; Su H
    Nanoscale; 2012 Feb; 4(4):1254-7. PubMed ID: 22252198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A density functional theory study of shake-up satellites in photoemission of carbon fullerenes and nanotubes.
    Gao B; Wu Z; Luo Y
    J Chem Phys; 2008 Jun; 128(23):234704. PubMed ID: 18570516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorbate-induced defect formation and annihilation on graphene and single-walled carbon nanotubes.
    Tsetseris L; Pantelides ST
    J Phys Chem B; 2009 Jan; 113(4):941-4. PubMed ID: 19132838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A theoretical study on the interaction of aromatic amino acids with graphene and single walled carbon nanotube.
    Rajesh C; Majumder C; Mizuseki H; Kawazoe Y
    J Chem Phys; 2009 Mar; 130(12):124911. PubMed ID: 19334893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetism of substitutional Fe impurities in graphene nanoribbons.
    Longo RC; Carrete J; Gallego LJ
    J Chem Phys; 2011 Jan; 134(2):024704. PubMed ID: 21241143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.