These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
519 related articles for article (PubMed ID: 19624273)
1. Directional evolution of the slope of the metabolic rate-temperature relationship is correlated with climate. Terblanche JS; Clusella-Trullas S; Deere JA; Van Vuuren BJ; Chown SL Physiol Biochem Zool; 2009; 82(5):495-503. PubMed ID: 19624273 [TBL] [Abstract][Full Text] [Related]
2. Thermal tolerance in a south-east African population of the tsetse fly Glossina pallidipes (Diptera, Glossinidae): implications for forecasting climate change impacts. Terblanche JS; Clusella-Trullas S; Deere JA; Chown SL J Insect Physiol; 2008 Jan; 54(1):114-27. PubMed ID: 17889900 [TBL] [Abstract][Full Text] [Related]
3. Metabolic responses of Glossina pallidipes (Diptera: Glossinidae) puparia exposed to oxygen and temperature variation: implications for population dynamics and subterranean life. Basson CH; Terblanche JS J Insect Physiol; 2010 Dec; 56(12):1789-97. PubMed ID: 20673831 [TBL] [Abstract][Full Text] [Related]
4. Molecular phylogenetics of tsetse flies (Diptera: Glossinidae) based on mitochondrial (COI, 16S, ND2) and nuclear ribosomal DNA sequences, with an emphasis on the palpalis group. Dyer NA; Lawton SP; Ravel S; Choi KS; Lehane MJ; Robinson AS; Okedi LM; Hall MJ; Solano P; Donnelly MJ Mol Phylogenet Evol; 2008 Oct; 49(1):227-39. PubMed ID: 18692147 [TBL] [Abstract][Full Text] [Related]
5. Evidence for a discrete evolutionary lineage within Equatorial Guinea suggests that the tsetse fly Glossina palpalis palpalis exists as a species complex. Dyer NA; Furtado A; Cano J; Ferreira F; Odete Afonso M; Ndong-Mabale N; Ndong-Asumu P; Centeno-Lima S; Benito A; Weetman D; Donnelly MJ; Pinto J Mol Ecol; 2009 Aug; 18(15):3268-82. PubMed ID: 19619197 [TBL] [Abstract][Full Text] [Related]
6. Effects of acclimation temperature on thermal tolerance, locomotion performance and respiratory metabolism in Acheta domesticus L. (Orthoptera: Gryllidae). Lachenicht MW; Clusella-Trullas S; Boardman L; Le Roux C; Terblanche JS J Insect Physiol; 2010 Jul; 56(7):822-30. PubMed ID: 20197070 [TBL] [Abstract][Full Text] [Related]
7. Rapid population divergence in thermal reaction norms for an invading species: breaking the temperature-size rule. Kingsolver JG; Massie KR; Ragland GJ; Smith MH J Evol Biol; 2007 May; 20(3):892-900. PubMed ID: 17465900 [TBL] [Abstract][Full Text] [Related]
8. Differences in the physiological responses to temperature among stonechats from three populations reared in a common environment. Tieleman BI Comp Biochem Physiol A Mol Integr Physiol; 2007 Feb; 146(2):194-9. PubMed ID: 17110147 [TBL] [Abstract][Full Text] [Related]
9. Thermal resistance and performance correlate with climate in populations of a widespread mosquito. Vorhees AS; Gray EM; Bradley TJ Physiol Biochem Zool; 2013; 86(1):73-81. PubMed ID: 23303322 [TBL] [Abstract][Full Text] [Related]
10. Phenotypic plasticity of desiccation resistance in Glossina puparia: are there ecotype constraints on acclimation responses? Terblanche JS; Kleynhans E J Evol Biol; 2009 Aug; 22(8):1636-48. PubMed ID: 19522729 [TBL] [Abstract][Full Text] [Related]
12. Variation in scorpion metabolic rate and rate-temperature relationships: implications for the fundamental equation of the metabolic theory of ecology. Terblanche JS; Janion C; Chown SL J Evol Biol; 2007 Jul; 20(4):1602-12. PubMed ID: 17584252 [TBL] [Abstract][Full Text] [Related]
13. Insect rate-temperature relationships: environmental variation and the metabolic theory of ecology. Irlich UM; Terblanche JS; Blackburn TM; Chown SL Am Nat; 2009 Dec; 174(6):819-35. PubMed ID: 19860549 [TBL] [Abstract][Full Text] [Related]
14. Temperature-dependence of metabolic rate in Glossina morsitans morsitans (Diptera, Glossinidae) does not vary with gender, age, feeding, pregnancy or acclimation. Terblanche JS; Jaco Klok C; Chown SL J Insect Physiol; 2005 Aug; 51(8):861-70. PubMed ID: 15927198 [TBL] [Abstract][Full Text] [Related]
15. Role of larval host plants in the climate-driven range expansion of the butterfly Polygonia c-album. Braschler B; Hill JK J Anim Ecol; 2007 May; 76(3):415-23. PubMed ID: 17439459 [TBL] [Abstract][Full Text] [Related]
16. Natural selection and genetic variation for reproductive reaction norms in a wild bird population. Brommer JE; Merilä J; Sheldon BC; Gustafsson L Evolution; 2005 Jun; 59(6):1362-71. PubMed ID: 16050111 [TBL] [Abstract][Full Text] [Related]
17. Latitudinal and voltinism compensation shape thermal reaction norms for growth rate. Shama LN; Campero-Paz M; Wegner KM; DE Block M; Stoks R Mol Ecol; 2011 Jul; 20(14):2929-41. PubMed ID: 21689189 [TBL] [Abstract][Full Text] [Related]
18. Thermodynamics constrains the evolution of insect population growth rates: "warmer is better". Frazier MR; Huey RB; Berrigan D Am Nat; 2006 Oct; 168(4):512-20. PubMed ID: 17004222 [TBL] [Abstract][Full Text] [Related]
19. Combined effects of climate and biotic interactions on the elevational range of a phytophagous insect. Merrill RM; Gutiérrez D; Lewis OT; Gutiérrez J; Díez SB; Wilson RJ J Anim Ecol; 2008 Jan; 77(1):145-55. PubMed ID: 18177334 [TBL] [Abstract][Full Text] [Related]
20. The evolution of phenotypic plasticity in spatially structured environments: implications of intraspecific competition, plasticity costs and environmental characteristics. Ernande B; Dieckmann U J Evol Biol; 2004 May; 17(3):613-28. PubMed ID: 15149404 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]