These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 19624580)

  • 21. Sudden failure of implantable pulse generators: cause of failure and examination.
    Lanmüller H; Buchroithner J; Wernisch J; Alesch F
    Biomed Tech (Berl); 2007 Oct; 52(5):356-9. PubMed ID: 17915998
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [The development of a distribution system for medical lasers and its clinical application].
    Okae S; Ishiguchi T; Ishigaki T; Sakuma S
    Nihon Igaku Hoshasen Gakkai Zasshi; 1991 Feb; 51(2):173-8. PubMed ID: 2034524
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sudden failure of dual channel pulse generators.
    Alesch F
    Mov Disord; 2005 Jan; 20(1):64-6; discussion 66. PubMed ID: 15580627
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An implantable neural sensing microsystem with fiber-optic data transmission and power delivery.
    Park S; Borton DA; Kang M; Nurmikko AV; Song YK
    Sensors (Basel); 2013 May; 13(5):6014-31. PubMed ID: 23666130
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Continuous adaptive beam pointing and tracking for laser power transmission.
    Schäfer CA
    Opt Express; 2010 Jun; 18(13):13451-67. PubMed ID: 20588476
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A fiber-based implantable multi-optrode array with contiguous optical and electrical sites.
    Chen S; Pei W; Gui Q; Chen Y; Zhao S; Wang H; Chen H
    J Neural Eng; 2013 Aug; 10(4):046020. PubMed ID: 23883568
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A flexible super-capacitive solid-state power supply for miniature implantable medical devices.
    Meng C; Gall OZ; Irazoqui PP
    Biomed Microdevices; 2013 Dec; 15(6):973-83. PubMed ID: 23832644
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Implantable power generation system utilizing muscle contractions excited by electrical stimulation.
    Sahara G; Hijikata W; Tomioka K; Shinshi T
    Proc Inst Mech Eng H; 2016 Jun; 230(6):569-78. PubMed ID: 27006422
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design and Testing of a Transcutaneous RF Recharging System for a Fetal Micropacemaker.
    Vest AN; Zhou L; Huang X; Norekyan V; Bar-Cohen Y; Chmait RH; Loeb GE
    IEEE Trans Biomed Circuits Syst; 2017 Apr; 11(2):336-346. PubMed ID: 28212097
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A multi-bundle concentric coil wirelessly transferring power to in vivo implantable devices.
    Amasha HM; Al-Nabulsi JI; Aloquili OM; Al-Naami BO
    J Med Eng Technol; 2011 Jan; 35(1):47-53. PubMed ID: 21142590
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Successful pacing using a batteryless sunlight-powered pacemaker.
    Haeberlin A; Zurbuchen A; Schaerer J; Wagner J; Walpen S; Huber C; Haeberlin H; Fuhrer J; Vogel R
    Europace; 2014 Oct; 16(10):1534-9. PubMed ID: 24916431
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A beam-splitting device for use with fiber-coupled laser light sources for photodynamic therapy.
    Wood LM; Bellnier DA; Oseroff AR; Potter WR
    Photochem Photobiol; 2002 Dec; 76(6):683-5. PubMed ID: 12511051
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A photovoltaic-driven and energy-autonomous CMOS implantable sensor.
    Ayazian S; Akhavan VA; Soenen E; Hassibi A
    IEEE Trans Biomed Circuits Syst; 2012 Aug; 6(4):336-43. PubMed ID: 23853178
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Advances in Implantable Medical Device Battery].
    Fang Y; Hou W; Zhou W; Zhang H
    Zhongguo Yi Liao Qi Xie Za Zhi; 2018 Jul; 42(4):272-275. PubMed ID: 30112893
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optical breast lesion localization fiber: preclinical testing of a new device.
    Hussman KL; Ward BA; McKhann CF; Pustilnick SM; Tocino I; Horvath LJ; Philpotts LE; Lee CH
    Radiology; 1996 Sep; 200(3):865-6. PubMed ID: 8756946
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Patient Experience with Rechargeable Implantable Pulse Generator Deep Brain Stimulation for Movement Disorders.
    Mitchell KT; Volz M; Lee A; San Luciano M; Wang S; Starr PA; Larson P; Galifianakis NB; Ostrem JL
    Stereotact Funct Neurosurg; 2019; 97(2):113-119. PubMed ID: 31288242
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Polydimethylsiloxane-based optical waveguides for tetherless powering of floating microstimulators.
    Ersen A; Sahin M
    J Biomed Opt; 2017 May; 22(5):55005. PubMed ID: 28500857
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A PDMS-based optical waveguide for transcutaneous powering of microelectrode arrays.
    Ersen A; Sahin M
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4475-4478. PubMed ID: 28269272
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pulse generator battery life in deep brain stimulation: out with the old… in with the less durable?
    de Schlichting E; Coll G; Zaldivar-Jolissaint JF; Coste J; Marques AR; Mulliez A; Durif F; Lemaire JJ
    Acta Neurochir (Wien); 2019 Oct; 161(10):2043-2046. PubMed ID: 31444678
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A high-performance transcutaneous battery charger for medical implants.
    Artan N; Vanjani H; Vashist G; Fu Z; Bhakthavatsala S; Ludvig N; Medveczky G; Chao H
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1581-4. PubMed ID: 21096386
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.