These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 19624587)

  • 1. Optimal pressure regulation of the pneumatic ventricular assist device with bellows-type driver.
    Lee JJ; Kim BS; Choi J; Choi H; Ahn CB; Nam KW; Jeong GS; Lim CH; Son HS; Sun K
    Artif Organs; 2009 Aug; 33(8):627-33. PubMed ID: 19624587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of an algorithm to regulate pump output for a closed air-loop type pneumatic biventricular assist device.
    Nam KW; Lee JJ; Hwang CM; Choi J; Choi H; Choi SW; Sun K
    Artif Organs; 2009 Dec; 33(12):1063-8. PubMed ID: 19604228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a closed air loop electropneumatic actuator for driving a pneumatic blood pump.
    Jeong GS; Hwang CM; Nam KW; Ahn CB; Kim HC; Lee JJ; Choi J; Son HS; Fang YH; Son KH; Lim CH; Sun K
    Artif Organs; 2009 Aug; 33(8):657-62. PubMed ID: 19624584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Portable pneumatic biventricular driver for the Thoratec ventricular assist device.
    Farrar DJ; Buck KE; Coulter JH; Kupa EJ
    ASAIO J; 1997; 43(5):M631-4. PubMed ID: 9360121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A controller for a miniature intra-aortic ventricular assist device.
    Hsu PL; Bruch J; McMahon R
    Artif Organs; 2011 Mar; 35(3):282-7. PubMed ID: 21114678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An automatic control algorithm for the optimal driving of the ventricular-assist device.
    Yoshizawa M; Takeda H; Watanabe T; Miura M; Yambe T; Katahira Y; Nitta S
    IEEE Trans Biomed Eng; 1992 Mar; 39(3):243-52. PubMed ID: 1555854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of systolic duration on mechanical heart valve cavitation in a pneumatic ventricular assist device: using a monoleaflet valve.
    Lee H; Tatsumi E; Taenaka Y
    ASAIO J; 2008; 54(1):25-30. PubMed ID: 18204312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal pulse pressure of pulmonary circulation under bi-ventricular assist after cardiogenic shock.
    Eda K
    Ann Thorac Cardiovasc Surg; 1999 Dec; 5(6):365-9. PubMed ID: 10637385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscle powered blood pump: design and initial test results.
    Trumble DR; Magovern JA
    ASAIO J; 1999; 45(3):178-82. PubMed ID: 10360719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and control of the atrio-aortic left ventricular assist device based on O2 consumption.
    Drzewiecki GM; Pilla JJ; Welkowitz W
    IEEE Trans Biomed Eng; 1990 Feb; 37(2):128-37. PubMed ID: 2312137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical and experimental analysis of an axial flow left ventricular assist device: the influence of the diffuser on overall pump performance.
    Untaroiu A; Throckmorton AL; Patel SM; Wood HG; Allaire PE; Olsen DB
    Artif Organs; 2005 Jul; 29(7):581-91. PubMed ID: 15982287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of the driving condition of a pneumatic ventricular assist device on the cavitation intensity of the inlet and outlet mechanical heart valves.
    Lee H; Tatsumi E; Taenaka Y
    ASAIO J; 2009; 55(4):328-34. PubMed ID: 19506466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control strategies for afterload reduction with an artificial vasculature device.
    Giridharan GA; Cheng RC; Glower JS; Ewert DL; Sobieski MA; Slaughter MS; Koenig SC
    ASAIO J; 2012; 58(4):353-62. PubMed ID: 22635010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance prediction of a percutaneous ventricular assist system using nonlinear circuit analysis techniques.
    Yu YC; Simaan MA; Mushi SE; Zorn NV
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):419-29. PubMed ID: 18269977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Left ventricular assist device weaning: hemodynamic response and relationship to stroke volume and rate reduction protocols.
    Slaughter MS; Sobieski MA; Koenig SC; Pappas PS; Tatooles AJ; Silver MA
    ASAIO J; 2006; 52(3):228-33. PubMed ID: 16760709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concepts in the application of pneumatic ventricular assist devices for ischemic myocardial injury.
    Gutfinger DE; Ott RA; Eugene J; Gazzaniga AB
    ASAIO J; 1995; 41(2):162-8. PubMed ID: 7640420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An adaptive aortic pressure observer for the Penn State Electric Ventricular Assist Device.
    Tasch U; Koontz JW; Ignatoski MA; Geselowitz DB
    IEEE Trans Biomed Eng; 1990 Apr; 37(4):374-83. PubMed ID: 2338350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pneumatic pulsatile ventricular assist devices in children under 1 year of age.
    Stiller B; Weng Y; Hübler M; Lemmer J; Nagdyman N; Redlin M; Lange PE; Hetzer R
    Eur J Cardiothorac Surg; 2005 Aug; 28(2):234-9. PubMed ID: 15949952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of an implantable undulation type ventricular assist device for control of organ circulation.
    Yambe T; Abe Y; Imachi K; Shiraishi Y; Shibata M; Yamaguchi T; Wang Q; Duan X; Liu H; Yoshizawa M; Tanaka A; Matsuki H; Sato F; Haga Y; Esashi M; Tabayashi K; Mitamura Y; Sasada H; Umezu M; Matsuda T; Nitta S
    Artif Organs; 2004 Oct; 28(10):940-4. PubMed ID: 15385002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Synthesis and evaluation of the adaptive control system for the ventricular assist device by using the circulatory system simulator].
    Feng JS; Yoshizawa M; Takeda H; Miura M; Yanbe T; Katahira Y; Nitta S
    Iyodenshi To Seitai Kogaku; 1989 Mar; 27(1):8-18. PubMed ID: 2754864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.