These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
274 related articles for article (PubMed ID: 19625387)
1. MD simulations of ligand-bound and ligand-free aptamer: molecular level insights into the binding and switching mechanism of the add A-riboswitch. Sharma M; Bulusu G; Mitra A RNA; 2009 Sep; 15(9):1673-92. PubMed ID: 19625387 [TBL] [Abstract][Full Text] [Related]
2. Molecular dynamics simulation of the binding process of ligands to the add adenine riboswitch aptamer. Bao L; Wang J; Xiao Y Phys Rev E; 2019 Aug; 100(2-1):022412. PubMed ID: 31574664 [TBL] [Abstract][Full Text] [Related]
3. Exploring the Binding Process of Cognate Ligand to Add Adenine Riboswitch Aptamer by Using Explicit Solvent Molecular Dynamics (MD) Simulation. Bao L; Xiao Y Methods Mol Biol; 2023; 2568():103-122. PubMed ID: 36227564 [TBL] [Abstract][Full Text] [Related]
4. Role of ligand binding in structural organization of add A-riboswitch aptamer: a molecular dynamics simulation. Gong Z; Zhao Y; Chen C; Xiao Y J Biomol Struct Dyn; 2011 Oct; 29(2):403-16. PubMed ID: 21875158 [TBL] [Abstract][Full Text] [Related]
5. Conformational flexibility of adenine riboswitch aptamer in apo and bound states using NMR and an X-ray free electron laser. Ding J; Swain M; Yu P; Stagno JR; Wang YX J Biomol NMR; 2019 Sep; 73(8-9):509-518. PubMed ID: 31606878 [TBL] [Abstract][Full Text] [Related]
6. Using reweighted pulling simulations to characterize conformational changes in riboswitches. Di Palma F; Colizzi F; Bussi G Methods Enzymol; 2015; 553():139-62. PubMed ID: 25726464 [TBL] [Abstract][Full Text] [Related]
7. Ligand Binding Mechanism and Its Relationship with Conformational Changes in Adenine Riboswitch. Hu G; Li H; Xu S; Wang J Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32168940 [TBL] [Abstract][Full Text] [Related]
8. Thermodynamic and kinetic characterization of ligand binding to the purine riboswitch aptamer domain. Gilbert SD; Stoddard CD; Wise SJ; Batey RT J Mol Biol; 2006 Jun; 359(3):754-68. PubMed ID: 16650860 [TBL] [Abstract][Full Text] [Related]
9. Molecular dynamics simulation study of the binding of purine bases to the aptamer domain of the guanine sensing riboswitch. Villa A; Wöhnert J; Stock G Nucleic Acids Res; 2009 Aug; 37(14):4774-86. PubMed ID: 19515936 [TBL] [Abstract][Full Text] [Related]
10. Molecular Dynamics Simulations of the Aptamer Domain of Guanidinium Ion Binding Riboswitch Negi I; Mahmi AS; Seelam Prabhakar P; Sharma P J Chem Inf Model; 2021 Oct; 61(10):5243-5255. PubMed ID: 34609872 [TBL] [Abstract][Full Text] [Related]
11. Heterogeneity and dynamics of the ligand recognition mode in purine-sensing riboswitches. Jain N; Zhao L; Liu JD; Xia T Biochemistry; 2010 May; 49(17):3703-14. PubMed ID: 20345178 [TBL] [Abstract][Full Text] [Related]
12. Insights into ligand binding to PreQ1 Riboswitch Aptamer from molecular dynamics simulations. Gong Z; Zhao Y; Chen C; Duan Y; Xiao Y PLoS One; 2014; 9(3):e92247. PubMed ID: 24663240 [TBL] [Abstract][Full Text] [Related]
13. A structural intermediate pre-organizes the add adenine riboswitch for ligand recognition. St-Pierre P; Shaw E; Jacques S; Dalgarno PA; Perez-Gonzalez C; Picard-Jean F; Penedo JC; Lafontaine DA Nucleic Acids Res; 2021 Jun; 49(10):5891-5904. PubMed ID: 33963862 [TBL] [Abstract][Full Text] [Related]
14. Loop-loop interaction in an adenine-sensing riboswitch: a molecular dynamics study. Allnér O; Nilsson L; Villa A RNA; 2013 Jul; 19(7):916-26. PubMed ID: 23716711 [TBL] [Abstract][Full Text] [Related]
15. Structural distinctions between NAD+ riboswitch domains 1 and 2 determine differential folding and ligand binding. Chen H; Egger M; Xu X; Flemmich L; Krasheninina O; Sun A; Micura R; Ren A Nucleic Acids Res; 2020 Dec; 48(21):12394-12406. PubMed ID: 33170270 [TBL] [Abstract][Full Text] [Related]
16. Requirements for efficient ligand-gated co-transcriptional switching in designed variants of the B. subtilis pbuE adenine-responsive riboswitch in E. coli. Drogalis LK; Batey RT PLoS One; 2020; 15(12):e0243155. PubMed ID: 33259551 [TBL] [Abstract][Full Text] [Related]
17. The importance of helix P1 stability for structural pre-organization and ligand binding affinity of the adenine riboswitch aptamer domain. Nozinovic S; Reining A; Kim YB; Noeske J; Schlepckow K; Wöhnert J; Schwalbe H RNA Biol; 2014; 11(5):655-6. PubMed ID: 24921630 [TBL] [Abstract][Full Text] [Related]
18. Pairing interactions between nucleobases and ligands in aptamer:ligand complexes of riboswitches: crystal structure analysis, classification, optimal structures, and accurate interaction energies. Seelam PP; Mitra A; Sharma P RNA; 2019 Oct; 25(10):1274-1290. PubMed ID: 31315914 [TBL] [Abstract][Full Text] [Related]
19. Ligand-induced stabilization of the aptamer terminal helix in the add adenine riboswitch. Di Palma F; Colizzi F; Bussi G RNA; 2013 Nov; 19(11):1517-24. PubMed ID: 24051105 [TBL] [Abstract][Full Text] [Related]
20. Riboswitch structure: an internal residue mimicking the purine ligand. Delfosse V; Bouchard P; Bonneau E; Dagenais P; Lemay JF; Lafontaine DA; Legault P Nucleic Acids Res; 2010 Apr; 38(6):2057-68. PubMed ID: 20022916 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]