These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 19625966)

  • 41. Have we found the tip link, transduction channel, and gating spring of the hair cell?
    Gillespie PG; Dumont RA; Kachar B
    Curr Opin Neurobiol; 2005 Aug; 15(4):389-96. PubMed ID: 16009547
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The role of potassium recirculation in cochlear amplification.
    Mistrik P; Ashmore J
    Curr Opin Otolaryngol Head Neck Surg; 2009 Oct; 17(5):394-9. PubMed ID: 19741536
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Stochastic sensitivity analysis of the noise-induced excitability in a model of a hair bundle.
    Bashkirtseva I; Neiman AB; Ryashko L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052711. PubMed ID: 23767570
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Transduction and adaptation in vertebrate hair cells: correlating structure with function.
    Corey DP; Assad JA
    Soc Gen Physiol Ser; 1992; 47():325-42. PubMed ID: 1369769
    [No Abstract]   [Full Text] [Related]  

  • 45. A mechanical model of the gating spring mechanism of stereocilia.
    Lim K; Park S
    J Biomech; 2009 Sep; 42(13):2158-64. PubMed ID: 19679307
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Development and regeneration of hair cells.
    Ozeki H; Oshima K; Senn P; Kurihara H; Kaga K
    Acta Otolaryngol Suppl; 2007 Dec; (559):38-44. PubMed ID: 18340569
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mechanotransduction is required for establishing and maintaining mature inner hair cells and regulating efferent innervation.
    Corns LF; Johnson SL; Roberts T; Ranatunga KM; Hendry A; Ceriani F; Safieddine S; Steel KP; Forge A; Petit C; Furness DN; Kros CJ; Marcotti W
    Nat Commun; 2018 Oct; 9(1):4015. PubMed ID: 30275467
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Steady-state adaptation of mechanotransduction modulates the resting potential of auditory hair cells, providing an assay for endolymph [Ca2+].
    Farris HE; Wells GB; Ricci AJ
    J Neurosci; 2006 Nov; 26(48):12526-36. PubMed ID: 17135414
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Homeostatic enhancement of sensory transduction.
    Milewski AR; Ó Maoiléidigh D; Salvi JD; Hudspeth AJ
    Proc Natl Acad Sci U S A; 2017 Aug; 114(33):E6794-E6803. PubMed ID: 28760949
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The composition and role of cross links in mechanoelectrical transduction in vertebrate sensory hair cells.
    Hackney CM; Furness DN
    J Cell Sci; 2013 Apr; 126(Pt 8):1721-31. PubMed ID: 23641064
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The hair cells of the inner ear. They are exquisitely sensitive transducers that in human beings mediate the senses of hearing and balance. A tiny force applied to the top of the cell produces an electrical signal at the bottom.
    Hudspeth AJ
    Sci Am; 1983 Jan; 248(1):54-64. PubMed ID: 6337395
    [No Abstract]   [Full Text] [Related]  

  • 52. A virtual hair cell, I: addition of gating spring theory into a 3-D bundle mechanical model.
    Nam JH; Cotton JR; Grant W
    Biophys J; 2007 Mar; 92(6):1918-28. PubMed ID: 17208975
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Two mechanisms for transducer adaptation in vertebrate hair cells.
    Holt JR; Corey DP
    Proc Natl Acad Sci U S A; 2000 Oct; 97(22):11730-5. PubMed ID: 11050202
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Myosin-1c, the hair cell's adaptation motor.
    Gillespie PG; Cyr JL
    Annu Rev Physiol; 2004; 66():521-45. PubMed ID: 14977412
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Micromechanical models for the Brownian motion of hair cell stereocilia.
    Svrcek-Seiler WA; Gebeshuber IC; Rattay F; Biro TS; Markum H
    J Theor Biol; 1998 Aug; 193(4):623-30. PubMed ID: 9745758
    [TBL] [Abstract][Full Text] [Related]  

  • 56. What have lizard ears taught us about auditory physiology?
    Manley GA; Köppl C
    Hear Res; 2008 Apr; 238(1-2):3-11. PubMed ID: 17983712
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transmembrane channel-like (TMC) genes are required for auditory and vestibular mechanosensation.
    Kawashima Y; Kurima K; Pan B; Griffith AJ; Holt JR
    Pflugers Arch; 2015 Jan; 467(1):85-94. PubMed ID: 25074487
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In search of the hair-cell gating spring elastic properties of ankyrin and cadherin repeats.
    Sotomayor M; Corey DP; Schulten K
    Structure; 2005 Apr; 13(4):669-82. PubMed ID: 15837205
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The physiology of mechanoelectrical transduction channels in hearing.
    Fettiplace R; Kim KX
    Physiol Rev; 2014 Jul; 94(3):951-86. PubMed ID: 24987009
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Amplification in the auditory periphery: the effect of coupling tuning mechanisms.
    Montgomery KA; Silber M; Solla SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051924. PubMed ID: 17677115
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.