These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 19626703)
1. Were genome-wide linkage studies a waste of time? Exploiting candidate regions within genome-wide association studies. Yoo YJ; Bull SB; Paterson AD; Waggott D; Sun L; Genet Epidemiol; 2010 Feb; 34(2):107-18. PubMed ID: 19626703 [TBL] [Abstract][Full Text] [Related]
2. Stratified false discovery control for large-scale hypothesis testing with application to genome-wide association studies. Sun L; Craiu RV; Paterson AD; Bull SB Genet Epidemiol; 2006 Sep; 30(6):519-30. PubMed ID: 16800000 [TBL] [Abstract][Full Text] [Related]
3. Agreement among type 2 diabetes linkage studies but a poor correlation with results from genome-wide association studies. Lillioja S; Wilton A Diabetologia; 2009 Jun; 52(6):1061-74. PubMed ID: 19296077 [TBL] [Abstract][Full Text] [Related]
4. Improving power of genome-wide association studies with weighted false discovery rate control and prioritized subset analysis. Lin WY; Lee WC PLoS One; 2012; 7(4):e33716. PubMed ID: 22496761 [TBL] [Abstract][Full Text] [Related]
5. An evaluation of statistical approaches to rare variant analysis in genetic association studies. Morris AP; Zeggini E Genet Epidemiol; 2010 Feb; 34(2):188-93. PubMed ID: 19810025 [TBL] [Abstract][Full Text] [Related]
6. Prioritized subset analysis: improving power in genome-wide association studies. Li C; Li M; Lange EM; Watanabe RM Hum Hered; 2008; 65(3):129-41. PubMed ID: 17934316 [TBL] [Abstract][Full Text] [Related]
7. Exploration of empirical Bayes hierarchical modeling for the analysis of genome-wide association study data. Heron EA; O'Dushlaine C; Segurado R; Gallagher L; Gill M Biostatistics; 2011 Jul; 12(3):445-61. PubMed ID: 21252078 [TBL] [Abstract][Full Text] [Related]
8. Follow-up analysis of genome-wide association data identifies novel loci for type 1 diabetes. Grant SF; Qu HQ; Bradfield JP; Marchand L; Kim CE; Glessner JT; Grabs R; Taback SP; Frackelton EC; Eckert AW; Annaiah K; Lawson ML; Otieno FG; Santa E; Shaner JL; Smith RM; Skraban R; Imielinski M; Chiavacci RM; Grundmeier RW; Stanley CA; Kirsch SE; Waggott D; Paterson AD; Monos DS; ; Polychronakos C; Hakonarson H Diabetes; 2009 Jan; 58(1):290-5. PubMed ID: 18840781 [TBL] [Abstract][Full Text] [Related]
9. Genome-wide association studies. Yang TH; Kon M; DeLisi C Methods Mol Biol; 2013; 939():233-51. PubMed ID: 23192550 [TBL] [Abstract][Full Text] [Related]
10. Genome-wide association analyses of North American Rheumatoid Arthritis Consortium and Framingham Heart Study data utilizing genome-wide linkage results. Yoo YJ; Pinnaduwage D; Waggott D; Bull SB; Sun L BMC Proc; 2009 Dec; 3 Suppl 7(Suppl 7):S103. PubMed ID: 20017967 [TBL] [Abstract][Full Text] [Related]
11. Ranking of genome-wide association scan signals by different measures. Strömberg U; Björk J; Vineis P; Broberg K; Zeggini E Int J Epidemiol; 2009 Oct; 38(5):1364-73. PubMed ID: 19734549 [TBL] [Abstract][Full Text] [Related]
12. Meta-analysis of genome-wide association studies: no efficiency gain in using individual participant data. Lin DY; Zeng D Genet Epidemiol; 2010 Jan; 34(1):60-6. PubMed ID: 19847795 [TBL] [Abstract][Full Text] [Related]
13. Meta-analysis of heterogeneous data sources for genome-scale identification of risk genes in complex phenotypes. Pers TH; Hansen NT; Lage K; Koefoed P; Dworzynski P; Miller ML; Flint TJ; Mellerup E; Dam H; Andreassen OA; Djurovic S; Melle I; Børglum AD; Werge T; Purcell S; Ferreira MA; Kouskoumvekaki I; Workman CT; Hansen T; Mors O; Brunak S Genet Epidemiol; 2011 Jul; 35(5):318-32. PubMed ID: 21484861 [TBL] [Abstract][Full Text] [Related]
14. Power and type I error rate of false discovery rate approaches in genome-wide association studies. Yang Q; Cui J; Chazaro I; Cupples LA; Demissie S BMC Genet; 2005 Dec; 6 Suppl 1(Suppl 1):S134. PubMed ID: 16451593 [TBL] [Abstract][Full Text] [Related]
15. GWAPower: a statistical power calculation software for genome-wide association studies with quantitative traits. Feng S; Wang S; Chen CC; Lan L BMC Genet; 2011 Jan; 12():12. PubMed ID: 21255436 [TBL] [Abstract][Full Text] [Related]
16. An application of Random Forests to a genome-wide association dataset: methodological considerations & new findings. Goldstein BA; Hubbard AE; Cutler A; Barcellos LF BMC Genet; 2010 Jun; 11():49. PubMed ID: 20546594 [TBL] [Abstract][Full Text] [Related]
17. Using linkage genome scans to improve power of association in genome scans. Roeder K; Bacanu SA; Wasserman L; Devlin B Am J Hum Genet; 2006 Feb; 78(2):243-52. PubMed ID: 16400608 [TBL] [Abstract][Full Text] [Related]
18. A powerful statistical framework for generalization testing in GWAS, with application to the HCHS/SOL. Sofer T; Heller R; Bogomolov M; Avery CL; Graff M; North KE; Reiner AP; Thornton TA; Rice K; Benjamini Y; Laurie CC; Kerr KF Genet Epidemiol; 2017 Apr; 41(3):251-258. PubMed ID: 28090672 [TBL] [Abstract][Full Text] [Related]
19. Identification of Chromosomal Regions Linked to Diabetic Nephropathy: A Meta-Analysis of Genome-Wide Linkage Scans. Tziastoudi M; Stefanidis I; Stravodimos K; Zintzaras E Genet Test Mol Biomarkers; 2019 Feb; 23(2):105-117. PubMed ID: 30694714 [TBL] [Abstract][Full Text] [Related]
20. Identification of a genetic locus on chromosome 4q34-35 for type 2 diabetes with overweight. Park MH; Kwak SH; Kim KJ; Go MJ; Lee HJ; Kim KS; Hwang JY; Kimm K; Cho YM; Lee HK; Park KS; Lee JY Exp Mol Med; 2013 Feb; 45(2):e7. PubMed ID: 23392254 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]