BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 19626703)

  • 1. Were genome-wide linkage studies a waste of time? Exploiting candidate regions within genome-wide association studies.
    Yoo YJ; Bull SB; Paterson AD; Waggott D; Sun L;
    Genet Epidemiol; 2010 Feb; 34(2):107-18. PubMed ID: 19626703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stratified false discovery control for large-scale hypothesis testing with application to genome-wide association studies.
    Sun L; Craiu RV; Paterson AD; Bull SB
    Genet Epidemiol; 2006 Sep; 30(6):519-30. PubMed ID: 16800000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Agreement among type 2 diabetes linkage studies but a poor correlation with results from genome-wide association studies.
    Lillioja S; Wilton A
    Diabetologia; 2009 Jun; 52(6):1061-74. PubMed ID: 19296077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving power of genome-wide association studies with weighted false discovery rate control and prioritized subset analysis.
    Lin WY; Lee WC
    PLoS One; 2012; 7(4):e33716. PubMed ID: 22496761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An evaluation of statistical approaches to rare variant analysis in genetic association studies.
    Morris AP; Zeggini E
    Genet Epidemiol; 2010 Feb; 34(2):188-93. PubMed ID: 19810025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prioritized subset analysis: improving power in genome-wide association studies.
    Li C; Li M; Lange EM; Watanabe RM
    Hum Hered; 2008; 65(3):129-41. PubMed ID: 17934316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploration of empirical Bayes hierarchical modeling for the analysis of genome-wide association study data.
    Heron EA; O'Dushlaine C; Segurado R; Gallagher L; Gill M
    Biostatistics; 2011 Jul; 12(3):445-61. PubMed ID: 21252078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Follow-up analysis of genome-wide association data identifies novel loci for type 1 diabetes.
    Grant SF; Qu HQ; Bradfield JP; Marchand L; Kim CE; Glessner JT; Grabs R; Taback SP; Frackelton EC; Eckert AW; Annaiah K; Lawson ML; Otieno FG; Santa E; Shaner JL; Smith RM; Skraban R; Imielinski M; Chiavacci RM; Grundmeier RW; Stanley CA; Kirsch SE; Waggott D; Paterson AD; Monos DS; ; Polychronakos C; Hakonarson H
    Diabetes; 2009 Jan; 58(1):290-5. PubMed ID: 18840781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide association studies.
    Yang TH; Kon M; DeLisi C
    Methods Mol Biol; 2013; 939():233-51. PubMed ID: 23192550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide association analyses of North American Rheumatoid Arthritis Consortium and Framingham Heart Study data utilizing genome-wide linkage results.
    Yoo YJ; Pinnaduwage D; Waggott D; Bull SB; Sun L
    BMC Proc; 2009 Dec; 3 Suppl 7(Suppl 7):S103. PubMed ID: 20017967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ranking of genome-wide association scan signals by different measures.
    Strömberg U; Björk J; Vineis P; Broberg K; Zeggini E
    Int J Epidemiol; 2009 Oct; 38(5):1364-73. PubMed ID: 19734549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Meta-analysis of genome-wide association studies: no efficiency gain in using individual participant data.
    Lin DY; Zeng D
    Genet Epidemiol; 2010 Jan; 34(1):60-6. PubMed ID: 19847795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Meta-analysis of heterogeneous data sources for genome-scale identification of risk genes in complex phenotypes.
    Pers TH; Hansen NT; Lage K; Koefoed P; Dworzynski P; Miller ML; Flint TJ; Mellerup E; Dam H; Andreassen OA; Djurovic S; Melle I; Børglum AD; Werge T; Purcell S; Ferreira MA; Kouskoumvekaki I; Workman CT; Hansen T; Mors O; Brunak S
    Genet Epidemiol; 2011 Jul; 35(5):318-32. PubMed ID: 21484861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Power and type I error rate of false discovery rate approaches in genome-wide association studies.
    Yang Q; Cui J; Chazaro I; Cupples LA; Demissie S
    BMC Genet; 2005 Dec; 6 Suppl 1(Suppl 1):S134. PubMed ID: 16451593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GWAPower: a statistical power calculation software for genome-wide association studies with quantitative traits.
    Feng S; Wang S; Chen CC; Lan L
    BMC Genet; 2011 Jan; 12():12. PubMed ID: 21255436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An application of Random Forests to a genome-wide association dataset: methodological considerations & new findings.
    Goldstein BA; Hubbard AE; Cutler A; Barcellos LF
    BMC Genet; 2010 Jun; 11():49. PubMed ID: 20546594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using linkage genome scans to improve power of association in genome scans.
    Roeder K; Bacanu SA; Wasserman L; Devlin B
    Am J Hum Genet; 2006 Feb; 78(2):243-52. PubMed ID: 16400608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A powerful statistical framework for generalization testing in GWAS, with application to the HCHS/SOL.
    Sofer T; Heller R; Bogomolov M; Avery CL; Graff M; North KE; Reiner AP; Thornton TA; Rice K; Benjamini Y; Laurie CC; Kerr KF
    Genet Epidemiol; 2017 Apr; 41(3):251-258. PubMed ID: 28090672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of Chromosomal Regions Linked to Diabetic Nephropathy: A Meta-Analysis of Genome-Wide Linkage Scans.
    Tziastoudi M; Stefanidis I; Stravodimos K; Zintzaras E
    Genet Test Mol Biomarkers; 2019 Feb; 23(2):105-117. PubMed ID: 30694714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of a genetic locus on chromosome 4q34-35 for type 2 diabetes with overweight.
    Park MH; Kwak SH; Kim KJ; Go MJ; Lee HJ; Kim KS; Hwang JY; Kimm K; Cho YM; Lee HK; Park KS; Lee JY
    Exp Mol Med; 2013 Feb; 45(2):e7. PubMed ID: 23392254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.