These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 19626703)

  • 21. Genome scan, fine-mapping, and candidate gene analysis of non-syndromic cleft lip with or without cleft palate reveals phenotype-specific differences in linkage and association results.
    Marazita ML; Lidral AC; Murray JC; Field LL; Maher BS; Goldstein McHenry T; Cooper ME; Govil M; Daack-Hirsch S; Riley B; Jugessur A; Felix T; Morene L; Mansilla MA; Vieira AR; Doheny K; Pugh E; Valencia-Ramirez C; Arcos-Burgos M
    Hum Hered; 2009; 68(3):151-70. PubMed ID: 19521098
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluating cost efficiency of SNP chips in genome-wide association studies.
    Li C; Li M; Long JR; Cai Q; Zheng W
    Genet Epidemiol; 2008 Jul; 32(5):387-95. PubMed ID: 18271056
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On the prospects of whole-genome association mapping in Saccharomyces cerevisiae.
    Connelly CF; Akey JM
    Genetics; 2012 Aug; 191(4):1345-53. PubMed ID: 22673807
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Controlling the Rate of GWAS False Discoveries.
    Brzyski D; Peterson CB; Sobczyk P; Candès EJ; Bogdan M; Sabatti C
    Genetics; 2017 Jan; 205(1):61-75. PubMed ID: 27784720
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A knowledge-based weighting framework to boost the power of genome-wide association studies.
    Li MX; Sham PC; Cherny SS; Song YQ
    PLoS One; 2010 Dec; 5(12):e14480. PubMed ID: 21217833
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improved correction for population stratification in genome-wide association studies by identifying hidden population structures.
    Li Q; Yu K
    Genet Epidemiol; 2008 Apr; 32(3):215-26. PubMed ID: 18161052
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multiple testing in genome-wide association studies via hidden Markov models.
    Wei Z; Sun W; Wang K; Hakonarson H
    Bioinformatics; 2009 Nov; 25(21):2802-8. PubMed ID: 19654115
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ParallABEL: an R library for generalized parallelization of genome-wide association studies.
    Sangket U; Mahasirimongkol S; Chantratita W; Tandayya P; Aulchenko YS
    BMC Bioinformatics; 2010 Apr; 11():217. PubMed ID: 20429914
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mouse genome-wide association mapping needs linkage analysis to avoid false-positive Loci.
    Manenti G; Galvan A; Pettinicchio A; Trincucci G; Spada E; Zolin A; Milani S; Gonzalez-Neira A; Dragani TA
    PLoS Genet; 2009 Jan; 5(1):e1000331. PubMed ID: 19132132
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Application and interpretation of genome-wide association (GWA) studies for informing pharmacogenomic research - examples from the field of age-related macular degeneration.
    SanGiovanni JP; Rosen R; Kaushal S
    Curr Mol Med; 2014; 14(7):814-32. PubMed ID: 25109799
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simultaneous analysis of all SNPs in genome-wide and re-sequencing association studies.
    Hoggart CJ; Whittaker JC; De Iorio M; Balding DJ
    PLoS Genet; 2008 Jul; 4(7):e1000130. PubMed ID: 18654633
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimizing the power of genome-wide association studies by using publicly available reference samples to expand the control group.
    Zhuang JJ; Zondervan K; Nyberg F; Harbron C; Jawaid A; Cardon LR; Barratt BJ; Morris AP
    Genet Epidemiol; 2010 May; 34(4):319-26. PubMed ID: 20088020
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identifying plausible genetic models based on association and linkage results: application to type 2 diabetes.
    Guan W; Boehnke M; Pluzhnikov A; Cox NJ; Scott LJ
    Genet Epidemiol; 2012 Dec; 36(8):820-8. PubMed ID: 22865662
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Detecting local high-scoring segments: a first-stage approach for genome-wide association studies.
    Guedj M; Robelin D; Hoebeke M; Lamarine M; Wojcik J; Nuel G
    Stat Appl Genet Mol Biol; 2006; 5():Article22. PubMed ID: 17049033
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rapid testing of gene-gene interactions in genome-wide association studies of binary and quantitative phenotypes.
    Bhattacharya K; McCarthy MI; Morris AP
    Genet Epidemiol; 2011 Dec; 35(8):800-8. PubMed ID: 21948692
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identifying significant gene-environment interactions using a combination of screening testing and hierarchical false discovery rate control.
    Frost HR; Shen L; Saykin AJ; Williams SM; Moore JH;
    Genet Epidemiol; 2016 Nov; 40(7):544-557. PubMed ID: 27578615
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A framework for pathway knowledge driven prioritization in genome-wide association studies.
    Biswas S; Pal S; Majumder PP; Bhattacharjee S
    Genet Epidemiol; 2020 Nov; 44(8):841-853. PubMed ID: 32779262
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Using gene expression to improve the power of genome-wide association analysis.
    Ho YY; Baechler EC; Ortmann W; Behrens TW; Graham RR; Bhangale TR; Pan W
    Hum Hered; 2014; 78(2):94-103. PubMed ID: 25096029
    [TBL] [Abstract][Full Text] [Related]  

  • 39. iGWAS: Integrative Genome-Wide Association Studies of Genetic and Genomic Data for Disease Susceptibility Using Mediation Analysis.
    Huang YT; Liang L; Moffatt MF; Cookson WO; Lin X
    Genet Epidemiol; 2015 Jul; 39(5):347-56. PubMed ID: 25997986
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A pleiotropy-informed Bayesian false discovery rate adapted to a shared control design finds new disease associations from GWAS summary statistics.
    Liley J; Wallace C
    PLoS Genet; 2015 Feb; 11(2):e1004926. PubMed ID: 25658688
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.