BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

604 related articles for article (PubMed ID: 19627779)

  • 1. Engineering functionally graded tissue engineering scaffolds.
    Leong KF; Chua CK; Sudarmadji N; Yeong WY
    J Mech Behav Biomed Mater; 2008 Apr; 1(2):140-52. PubMed ID: 19627779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Porous scaffold design for tissue engineering.
    Hollister SJ
    Nat Mater; 2005 Jul; 4(7):518-24. PubMed ID: 16003400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Current progress of fabricating tissue engineering scaffold using rapid prototyping techniques].
    Li X; Wang C
    Sheng Wu Gong Cheng Xue Bao; 2008 Aug; 24(8):1321-6. PubMed ID: 18998530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating novel technologies to fabricate smart scaffolds.
    Moroni L; de Wijn JR; van Blitterswijk CA
    J Biomater Sci Polym Ed; 2008; 19(5):543-72. PubMed ID: 18419938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The development of computer-aided system for tissue scaffolds (CASTS) system for functionally graded tissue-engineering scaffolds.
    Sudarmadji N; Chua CK; Leong KF
    Methods Mol Biol; 2012; 868():111-23. PubMed ID: 22692607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A review of rapid prototyping techniques for tissue engineering purposes.
    Peltola SM; Melchels FP; Grijpma DW; Kellomäki M
    Ann Med; 2008; 40(4):268-80. PubMed ID: 18428020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomaterials and scaffold design: key to tissue-engineering cartilage.
    Raghunath J; Rollo J; Sales KM; Butler PE; Seifalian AM
    Biotechnol Appl Biochem; 2007 Feb; 46(Pt 2):73-84. PubMed ID: 17227284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity.
    Lin CY; Kikuchi N; Hollister SJ
    J Biomech; 2004 May; 37(5):623-36. PubMed ID: 15046991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrospun bioscaffolds that mimic the topology of extracellular matrix.
    Han D; Gouma PI
    Nanomedicine; 2006 Mar; 2(1):37-41. PubMed ID: 17292114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel route in bone tissue engineering: magnetic biomimetic scaffolds.
    Bock N; Riminucci A; Dionigi C; Russo A; Tampieri A; Landi E; Goranov VA; Marcacci M; Dediu V
    Acta Biomater; 2010 Mar; 6(3):786-96. PubMed ID: 19788946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds.
    Arcaute K; Mann B; Wicker R
    Acta Biomater; 2010 Mar; 6(3):1047-54. PubMed ID: 19683602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of the mechanical properties and porosity relationships in selective laser-sintered polyhedral for functionally graded scaffolds.
    Sudarmadji N; Tan JY; Leong KF; Chua CK; Loh YT
    Acta Biomater; 2011 Feb; 7(2):530-7. PubMed ID: 20883840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scaffolds for tissue engineering and 3D cell culture.
    Carletti E; Motta A; Migliaresi C
    Methods Mol Biol; 2011; 695():17-39. PubMed ID: 21042963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon nanotubes in scaffolds for tissue engineering.
    Edwards SL; Werkmeister JA; Ramshaw JA
    Expert Rev Med Devices; 2009 Sep; 6(5):499-505. PubMed ID: 19751122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective laser sintering of biocompatible polymers for applications in tissue engineering.
    Tan KH; Chua CK; Leong KF; Cheah CM; Gui WS; Tan WS; Wiria FE
    Biomed Mater Eng; 2005; 15(1-2):113-24. PubMed ID: 15623935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A brief review of dispensing-based rapid prototyping techniques in tissue scaffold fabrication: role of modeling on scaffold properties prediction.
    Li MG; Tian XY; Chen XB
    Biofabrication; 2009 Sep; 1(3):032001. PubMed ID: 20811104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Schwarz meets Schwann: design and fabrication of biomorphic and durataxic tissue engineering scaffolds.
    Rajagopalan S; Robb RA
    Med Image Anal; 2006 Oct; 10(5):693-712. PubMed ID: 16890007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of hyaluronic acid-based scaffolds for brain tissue engineering.
    Wang TW; Spector M
    Acta Biomater; 2009 Sep; 5(7):2371-84. PubMed ID: 19403351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tissue engineering scaffolds for the regeneration of craniofacial bone.
    Chan WD; Perinpanayagam H; Goldberg HA; Hunter GK; Dixon SJ; Santos GC; Rizkalla AS
    J Can Dent Assoc; 2009 Jun; 75(5):373-7. PubMed ID: 19531334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication and characterization of poly(gamma-glutamic acid)-graft-chondroitin sulfate/polycaprolactone porous scaffolds for cartilage tissue engineering.
    Chang KY; Cheng LW; Ho GH; Huang YP; Lee YD
    Acta Biomater; 2009 Jul; 5(6):1937-47. PubMed ID: 19282262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.