These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
283 related articles for article (PubMed ID: 19627804)
1. Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications. Murr LE; Quinones SA; Gaytan SM; Lopez MI; Rodela A; Martinez EY; Hernandez DH; Martinez E; Medina F; Wicker RB J Mech Behav Biomed Mater; 2009 Jan; 2(1):20-32. PubMed ID: 19627804 [TBL] [Abstract][Full Text] [Related]
2. Ti-6Al-4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting. Yan C; Hao L; Hussein A; Young P J Mech Behav Biomed Mater; 2015 Nov; 51():61-73. PubMed ID: 26210549 [TBL] [Abstract][Full Text] [Related]
3. Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays. Murr LE; Gaytan SM; Medina F; Lopez H; Martinez E; Machado BI; Hernandez DH; Martinez L; Lopez MI; Wicker RB; Bracke J Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1917):1999-2032. PubMed ID: 20308113 [TBL] [Abstract][Full Text] [Related]
4. Corrosion resistance characteristics of a Ti-6Al-4V alloy scaffold that is fabricated by electron beam melting and selective laser melting for implantation in vivo. Zhao B; Wang H; Qiao N; Wang C; Hu M Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):832-841. PubMed ID: 27770961 [TBL] [Abstract][Full Text] [Related]
5. Microstructure and mechanical properties of plasma sprayed HA/YSZ/Ti-6Al-4V composite coatings. Khor KA; Gu YW; Pan D; Cheang P Biomaterials; 2004 Aug; 25(18):4009-17. PubMed ID: 15046891 [TBL] [Abstract][Full Text] [Related]
6. Microstructure and Electrochemical Behavior of a 3D-Printed Ti-6Al-4V Alloy. Yu Z; Chen Z; Qu D; Qu S; Wang H; Zhao F; Zhang C; Feng A; Chen D Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806597 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of Titanium Alloys Fabricated Using Rapid Prototyping Technologies-Electron Beam Melting and Laser Beam Melting. Koike M; Greer P; Owen K; Lilly G; Murr LE; Gaytan SM; Martinez E; Okabe T Materials (Basel); 2011 Oct; 4(10):1776-1792. PubMed ID: 28824107 [TBL] [Abstract][Full Text] [Related]
8. Influence of Manufacturing Parameters on Microstructure and Hydrogen Sorption Behavior of Electron Beam Melted Titanium Ti-6Al-4V Alloy. Pushilina N; Syrtanov M; Kashkarov E; Murashkina T; Kudiiarov V; Laptev R; Lider A; Koptyug A Materials (Basel); 2018 May; 11(5):. PubMed ID: 29747471 [TBL] [Abstract][Full Text] [Related]
9. The effect of build orientation on the microstructure and properties of selective laser melting Ti-6Al-4V for removable partial denture clasps. Xie W; Zheng M; Wang J; Li X J Prosthet Dent; 2020 Jan; 123(1):163-172. PubMed ID: 30982620 [TBL] [Abstract][Full Text] [Related]
10. Microstructural Tailoring and Enhancement in Compressive Properties of Additive Manufactured Ti-6Al-4V Alloy through Heat Treatment. Ahn B Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34639921 [TBL] [Abstract][Full Text] [Related]
11. Selective Laser Melting Produced Ti-6Al-4V: Post-Process Heat Treatments to Achieve Superior Tensile Properties. Ter Haar GM; Becker TH Materials (Basel); 2018 Jan; 11(1):. PubMed ID: 29342079 [TBL] [Abstract][Full Text] [Related]
12. [Comparison of surface characteristics and cytocompatibility of Ti-6Al-4V alloy fabricated with select laser melting and electron beam melting]. Zhao BJ; Wang H; Yan RZ; Wang C; Li RX; Hu M Zhonghua Kou Qiang Yi Xue Za Zhi; 2016 Dec; 51(12):753-757. PubMed ID: 27978917 [No Abstract] [Full Text] [Related]
13. Compression deformation behavior of Ti-6Al-4V alloy with cellular structures fabricated by electron beam melting. Cheng XY; Li SJ; Murr LE; Zhang ZB; Hao YL; Yang R; Medina F; Wicker RB J Mech Behav Biomed Mater; 2012 Dec; 16():153-62. PubMed ID: 23182384 [TBL] [Abstract][Full Text] [Related]
14. Microstructure and Mechanical Properties of As-Built Ti-6Al-4V and Ti-6Al-7Nb Alloys Produced by Selective Laser Melting Technology. Laskowska D; Bałasz B; Zawadka W Materials (Basel); 2024 Sep; 17(18):. PubMed ID: 39336345 [TBL] [Abstract][Full Text] [Related]
15. An initial study of diffusion bonds between superplastic Ti-6Al-4V for implant dentistry applications. Elias KL; Daehn GS; Brantley WA; McGlumphy EA J Prosthet Dent; 2007 Jun; 97(6):357-65. PubMed ID: 17618918 [TBL] [Abstract][Full Text] [Related]
16. Mechanical properties and in vitro cytocompatibility of dense and porous Ti-6Al-4V ELI manufactured by selective laser melting technology for biomedical applications. Suresh S; Sun CN; Tekumalla S; Rosa V; Ling Nai SM; Wong RCW J Mech Behav Biomed Mater; 2021 Nov; 123():104712. PubMed ID: 34365098 [TBL] [Abstract][Full Text] [Related]
17. Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4V produced by direct laser forming. Hollander DA; von Walter M; Wirtz T; Sellei R; Schmidt-Rohlfing B; Paar O; Erli HJ Biomaterials; 2006 Mar; 27(7):955-63. PubMed ID: 16115681 [TBL] [Abstract][Full Text] [Related]
18. Investigation of Microstructure and Mechanical Properties for Ti-6Al-4V Alloy Parts Produced Using Non-Spherical Precursor Powder by Laser Powder Bed Fusion. Varela J; Arrieta E; Paliwal M; Marucci M; Sandoval JH; Gonzalez JA; McWilliams B; Murr LE; Wicker RB; Medina F Materials (Basel); 2021 Jun; 14(11):. PubMed ID: 34199584 [TBL] [Abstract][Full Text] [Related]
19. Structure, phases, and mechanical response of Ti-alloy bioactive glass composite coatings. Nelson GM; Nychka JA; McDonald AG Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():261-76. PubMed ID: 24433912 [TBL] [Abstract][Full Text] [Related]
20. Microstructure and mechanical behavior of porous Ti-6Al-4V parts obtained by selective laser melting. Sallica-Leva E; Jardini AL; Fogagnolo JB J Mech Behav Biomed Mater; 2013 Oct; 26():98-108. PubMed ID: 23773976 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]