These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 19627811)

  • 1. Characterization of the linearly viscoelastic behavior of human tympanic membrane by nanoindentation.
    Daphalapurkar NP; Dai C; Gan RZ; Lu H
    J Mech Behav Biomed Mater; 2009 Jan; 2(1):82-92. PubMed ID: 19627811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A method for measuring linearly viscoelastic properties of human tympanic membrane using nanoindentation.
    Huang G; Daphalapurkar NP; Gan RZ; Lu H
    J Biomech Eng; 2008 Feb; 130(1):014501. PubMed ID: 18298192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping the Young's modulus distribution of the human tympanic membrane by microindentation.
    Luo H; Wang F; Cheng C; Nakmali DU; Gan RZ; Lu H
    Hear Res; 2019 Jul; 378():75-91. PubMed ID: 30853348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of the Young's modulus of the human pars tensa using in-situ pressurization and inverse finite-element analysis.
    Rohani SA; Ghomashchi S; Agrawal SK; Ladak HM
    Hear Res; 2017 Mar; 345():69-78. PubMed ID: 28087415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical properties of human tympanic membrane in the quasi-static regime from in situ point indentation measurements.
    Aernouts J; Aerts JR; Dirckx JJ
    Hear Res; 2012 Aug; 290(1-2):45-54. PubMed ID: 22583920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of young's modulus of human tympanic membrane at high strain rates.
    Luo H; Dai C; Gan RZ; Lu H
    J Biomech Eng; 2009 Jun; 131(6):064501. PubMed ID: 19449971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Static versus dynamic gerbil tympanic membrane elasticity: derivation of the complex modulus.
    Aernouts J; Dirckx JJ
    Biomech Model Mechanobiol; 2012 Jul; 11(6):829-40. PubMed ID: 22038402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring the quasi-static Young's modulus of the eardrum using an indentation technique.
    Hesabgar SM; Marshall H; Agrawal SK; Samani A; Ladak HM
    Hear Res; 2010 May; 263(1-2):168-76. PubMed ID: 20146934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the nonlinear elastic behavior of chinchilla tympanic membrane using micro-fringe projection.
    Liang J; Luo H; Yokell Z; Nakmali DU; Gan RZ; Lu H
    Hear Res; 2016 Sep; 339():1-11. PubMed ID: 27240479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical Properties of Baboon Tympanic Membrane from Young to Adult.
    Liang J; Engles WG; Smith KD; Dai C; Gan RZ
    J Assoc Res Otolaryngol; 2020 Oct; 21(5):395-407. PubMed ID: 32783162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The viscoelastic behavior of dental adhesives: a nanoindentation study.
    Sadr A; Shimada Y; Lu H; Tagami J
    Dent Mater; 2009 Jan; 25(1):13-9. PubMed ID: 18579198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Depth-Dependent Out-of-Plane Young's Modulus of the Human Cornea.
    Ramirez-Garcia MA; Sloan SR; Nidenberg B; Khalifa YM; Buckley MR
    Curr Eye Res; 2018 May; 43(5):595-604. PubMed ID: 29283675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Viscoelastic properties of human tympanic membrane.
    Cheng T; Dai C; Gan RZ
    Ann Biomed Eng; 2007 Feb; 35(2):305-14. PubMed ID: 17160465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High frequency characteristics of elasticity of skeletal muscle fibres kept in relaxed and rigor state.
    De Winkel ME; Blangé T; Treijtel BW
    J Muscle Res Cell Motil; 1994 Apr; 15(2):130-44. PubMed ID: 8051287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of age-related tympanic-membrane material properties on sound transmission in the middle ear in a three-dimensional finite-element model.
    Yu YC; Wang TC; Shih TC
    Comput Methods Programs Biomed; 2022 Mar; 215():106619. PubMed ID: 35038652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo areal modulus of elasticity estimation of the human tympanic membrane system: modelling of middle ear mechanical function in normal young and aged ears.
    Gaihede M; Liao D; Gregersen H
    Phys Med Biol; 2007 Feb; 52(3):803-14. PubMed ID: 17228122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multilayer material properties of aorta determined from nanoindentation tests.
    Hemmasizadeh A; Autieri M; Darvish K
    J Mech Behav Biomed Mater; 2012 Nov; 15():199-207. PubMed ID: 23123343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The elastic properties of trabecular and cortical bone tissues are similar: results from two microscopic measurement techniques.
    Turner CH; Rho J; Takano Y; Tsui TY; Pharr GM
    J Biomech; 1999 Apr; 32(4):437-41. PubMed ID: 10213035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of the quasi-static Young's modulus of the eardrum using a pressurization technique.
    Ghadarghadar N; Agrawal SK; Samani A; Ladak HM
    Comput Methods Programs Biomed; 2013 Jun; 110(3):231-9. PubMed ID: 23270964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Re-examination of the mechanical anisotropy of porcine thoracic aorta by uniaxial tensile tests.
    Chen Q; Wang Y; Li ZY
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):167. PubMed ID: 28155705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.