These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 19627825)

  • 1. Microstructural changes within similar coronary stents produced from two different austenitic steels.
    Weiss S; Meissner A; Fischer A
    J Mech Behav Biomed Mater; 2009 Apr; 2(2):210-6. PubMed ID: 19627825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications.
    Talha M; Behera CK; Sinha OP
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3563-75. PubMed ID: 23910251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative corrosion study of "Ni-free" austenitic stainless steels in view of medical applications.
    Reclaru L; Ziegenhagen R; Eschler PY; Blatter A; Lemaître J
    Acta Biomater; 2006 Jul; 2(4):433-44. PubMed ID: 16765883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of biocompatibility of medical grade high nitrogen nickel-free austenitic stainless steel in vitro.
    Li M; Yin T; Wang Y; Du F; Zou X; Gregersen H; Wang G
    Mater Sci Eng C Mater Biol Appl; 2014 Oct; 43():641-8. PubMed ID: 25175259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Duplex stainless steels for osteosynthesis devices.
    Cigada A; Rondelli G; Vicentini B; Giacomazzi M; Roos A
    J Biomed Mater Res; 1989 Sep; 23(9):1087-95. PubMed ID: 2777835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Measurement of low corrosion rate of coronary stents-made of 316L and 317L stainless steel].
    Liang C; Guo L; Chen W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Aug; 23(4):829-31. PubMed ID: 17002118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Study of a new medical stainless steel].
    Ren Y; Yang K; Zhang B; Yang H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Oct; 23(5):1101-3, 1122. PubMed ID: 17121363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nickel-free austenitic stainless steels for medical applications.
    Yang K; Ren Y
    Sci Technol Adv Mater; 2010 Feb; 11(1):014105. PubMed ID: 27877320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anisotropy of nickel release and corrosion in austenitic stainless steels.
    Reclaru L; Lüthy H; Ziegenhagen R; Eschler PY; Blatter A
    Acta Biomater; 2008 May; 4(3):680-5. PubMed ID: 18054530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of nitrogen and cold working on structural and mechanical behavior of Ni-free nitrogen containing austenitic stainless steels for biomedical applications.
    Talha M; Behera CK; Sinha OP
    Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():196-203. PubMed ID: 25492189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of alkanethiol self-assembled monolayers on 316L stainless steel for coronary artery stent nanomedicine applications: an oxidative and in vitro stability study.
    Mahapatro A; Johnson DM; Patel DN; Feldman MD; Ayon AA; Agrawal CM
    Nanomedicine; 2006 Sep; 2(3):182-90. PubMed ID: 17292141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-vitro long term and electrochemical corrosion resistance of cold deformed nitrogen containing austenitic stainless steels in simulated body fluid.
    Talha M; Behera CK; Sinha OP
    Mater Sci Eng C Mater Biol Appl; 2014 Jul; 40():455-66. PubMed ID: 24857514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanostructured nickel-free austenitic stainless steel/hydroxyapatite composites.
    Tulinski M; Jurczyk M
    J Nanosci Nanotechnol; 2012 Nov; 12(11):8779-82. PubMed ID: 23421285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel high nitrogen nickel-free coronary stents system: evaluation in a porcine model.
    Zhang B; Chen M; Zheng B; Wang XG; Wang XT; Fan YY; Huo Y
    Biomed Environ Sci; 2014 Apr; 27(4):289-94. PubMed ID: 24758757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal processing and characterization of 316LVM cardiovascular stent.
    Verma A; Choubey A; Raval A; Kothwala D
    Biomed Mater Eng; 2006; 16(6):381-95. PubMed ID: 17119277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of ultrafine-grained structure on the mechanical properties and biocompatibility of austenitic stainless steels.
    Rybalchenko OV; Anisimova NY; Kiselevsky MV; Belyakov AN; Tokar AA; Terent'ev VF; Prosvirnin DV; Rybalchenko GV; Raab GI; Dobatkin SV
    J Biomed Mater Res B Appl Biomater; 2020 May; 108(4):1460-1468. PubMed ID: 31617961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. P2000 - A high-nitrogen austenitic steel for application in bone surgery.
    Becerikli M; Jaurich H; Wallner C; Wagner JM; Dadras M; Jettkant B; Pöhl F; Seifert M; Jung O; Mitevski B; Karkar A; Lehnhardt M; Fischer A; Kauther MD; Behr B
    PLoS One; 2019; 14(3):e0214384. PubMed ID: 30913254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Study on electrochemical mechanism of coronary stent used austenitic stainless steel in flowing artificial body fluid].
    Liang C; Guo L; Chen W; Wang H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Aug; 22(4):730-3. PubMed ID: 16156260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A manufacturing and annealing protocol to develop a cold-sprayed Fe-316L stainless steel biodegradable stenting material.
    Frattolin J; Roy R; Rajagopalan S; Walsh M; Yue S; Bertrand OF; Mongrain R
    Acta Biomater; 2019 Nov; 99():479-494. PubMed ID: 31449928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of cold deformation on pitting corrosion of 00Cr18Mn15Mo2N0.86 stainless steel for coronary stent application.
    Ren Y; Zhao H; Liu W; Yang K
    Mater Sci Eng C Mater Biol Appl; 2016 Mar; 60():293-297. PubMed ID: 26706533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.