These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 19627826)

  • 1. A fiber-ceramic matrix composite material model for osteonal cortical bone fracture micromechanics: solution of arbitrary microcracks interaction.
    Raeisi Najafi A; Arshi AR; Saffar KP; Eslami MR; Fariborz S; Moeinzadeh MH
    J Mech Behav Biomed Mater; 2009 Jul; 2(3):217-23. PubMed ID: 19627826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Haversian cortical bone model with many radial microcracks: an elastic analytic solution.
    Najafi AR; Arshi AR; Eslami MR; Fariborz S; Moeinzadeh M
    Med Eng Phys; 2007 Jul; 29(6):708-17. PubMed ID: 17055321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micromechanics fracture in osteonal cortical bone: a study of the interactions between microcrack propagation, microstructure and the material properties.
    Najafi AR; Arshi AR; Eslami MR; Fariborz S; Moeinzadeh MH
    J Biomech; 2007; 40(12):2788-95. PubMed ID: 17376454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone.
    Chong AC; Miller F; Buxton M; Friis EA
    J Biomech Eng; 2007 Aug; 129(4):487-93. PubMed ID: 17655469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of the degradation of the organic matrix on the microscopic fracture behavior of trabecular bone.
    Fantner GE; Birkedal H; Kindt JH; Hassenkam T; Weaver JC; Cutroni JA; Bosma BL; Bawazer L; Finch MM; Cidade GA; Morse DE; Stucky GD; Hansma PK
    Bone; 2004 Nov; 35(5):1013-22. PubMed ID: 15542025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micromechanics of osteonal cortical bone fracture.
    Guo XE; Liang LC; Goldstein SA
    J Biomech Eng; 1998 Feb; 120(1):112-7. PubMed ID: 9675689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between damage accumulation and mechanical property degradation in cortical bone: microcrack orientation is important.
    Akkus O; Knott DF; Jepsen KJ; Davy DT; Rimnac CM
    J Biomed Mater Res A; 2003 Jun; 65(4):482-8. PubMed ID: 12761839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of cortical bone elastic constants by a two-level micromechanical model using a generalized self-consistent method.
    Dong XN; Guo XE
    J Biomech Eng; 2006 Jun; 128(3):309-16. PubMed ID: 16706580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A cumulative damage model for bone fracture.
    Carter DR; Caler WE
    J Orthop Res; 1985; 3(1):84-90. PubMed ID: 3981298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo fatigue microcracks in human bone: material properties of the surrounding bone matrix.
    Zioupos P
    Eur J Morphol; 2005; 42(1-2):31-41. PubMed ID: 16123022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microcrack growth parameters for compact bone deduced from stiffness variations.
    Taylor D
    J Biomech; 1998 Jul; 31(7):587-92. PubMed ID: 9796680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling fatigue damage evolution in bone.
    Pidaparti RM; Wang QY; Burr DB
    Biomed Mater Eng; 2001; 11(2):69-78. PubMed ID: 11352114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of bone microstructure on the initiation and growth of microcracks.
    O'Brien FJ; Taylor D; Clive Lee T
    J Orthop Res; 2005 Mar; 23(2):475-80. PubMed ID: 15734265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A three-dimensional elastic plastic damage constitutive law for bone tissue.
    Garcia D; Zysset PK; Charlebois M; Curnier A
    Biomech Model Mechanobiol; 2009 Apr; 8(2):149-65. PubMed ID: 18398628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cortical bone tissue resists fatigue fracture by deceleration and arrest of microcrack growth.
    Akkus O; Rimnac CM
    J Biomech; 2001 Jun; 34(6):757-64. PubMed ID: 11470113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fracture length scales in human cortical bone: the necessity of nonlinear fracture models.
    Yang QD; Cox BN; Nalla RK; Ritchie RO
    Biomaterials; 2006 Mar; 27(9):2095-113. PubMed ID: 16271757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The behaviour of microcracks in compact bone.
    O'brien FJ; Hardiman DA; Hazenberg JG; Mercy MV; Mohsin S; Taylor D; Lee TC
    Eur J Morphol; 2005; 42(1-2):71-9. PubMed ID: 16123026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fatigue strength of human cortical bone: age, physical, and material heterogeneity effects.
    Zioupos P; Gresle M; Winwood K
    J Biomed Mater Res A; 2008 Sep; 86(3):627-36. PubMed ID: 18022837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A theory of fatigue damage accumulation and repair in cortical bone.
    Martin B
    J Orthop Res; 1992 Nov; 10(6):818-25. PubMed ID: 1403296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Do microcracks decrease or increase fatigue resistance in cortical bone?
    Sobelman OS; Gibeling JC; Stover SM; Hazelwood SJ; Yeh OC; Shelton DR; Martin RB
    J Biomech; 2004 Sep; 37(9):1295-303. PubMed ID: 15275836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.