These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
539 related articles for article (PubMed ID: 19627829)
1. A micromechanical hyperelastic modeling of brain white matter under large deformation. Karami G; Grundman N; Abolfathi N; Naik A; Ziejewski M J Mech Behav Biomed Mater; 2009 Jul; 2(3):243-54. PubMed ID: 19627829 [TBL] [Abstract][Full Text] [Related]
2. A micromechanical procedure for modelling the anisotropic mechanical properties of brain white matter. Abolfathi N; Naik A; Sotudeh Chafi M; Karami G; Ziejewski M Comput Methods Biomech Biomed Engin; 2009 Jun; 12(3):249-62. PubMed ID: 18846460 [TBL] [Abstract][Full Text] [Related]
3. Relationship between structural modeling and hyperelastic material behavior: application to CNS white matter. Meaney DF Biomech Model Mechanobiol; 2003 Apr; 1(4):279-93. PubMed ID: 14586696 [TBL] [Abstract][Full Text] [Related]
4. A transversely isotropic viscoelastic constitutive equation for brainstem undergoing finite deformation. Ning X; Zhu Q; Lanir Y; Margulies SS J Biomech Eng; 2006 Dec; 128(6):925-33. PubMed ID: 17154695 [TBL] [Abstract][Full Text] [Related]
5. A micromechanical procedure for viscoelastic characterization of the axons and ECM of the brainstem. Javid S; Rezaei A; Karami G J Mech Behav Biomed Mater; 2014 Feb; 30():290-9. PubMed ID: 24361933 [TBL] [Abstract][Full Text] [Related]
6. Micromechanics of brain white matter tissue: A fiber-reinforced hyperelastic model using embedded element technique. Yousefsani SA; Shamloo A; Farahmand F J Mech Behav Biomed Mater; 2018 Apr; 80():194-202. PubMed ID: 29428702 [TBL] [Abstract][Full Text] [Related]
7. Bidirectional hyperelastic characterization of brain white matter tissue. Yousefsani SA; Karimi MZV Biomech Model Mechanobiol; 2023 Apr; 22(2):495-513. PubMed ID: 36550243 [TBL] [Abstract][Full Text] [Related]
8. Nonlinear mechanics of soft composites: hyperelastic characterization of white matter tissue components. Yousefsani SA; Shamloo A; Farahmand F Biomech Model Mechanobiol; 2020 Jun; 19(3):1143-1153. PubMed ID: 31853724 [TBL] [Abstract][Full Text] [Related]
9. Hyperelastic anisotropic microplane constitutive model for annulus fibrosus. Caner FC; Guo Z; Moran B; Bazant ZP; Carol I J Biomech Eng; 2007 Oct; 129(5):632-41. PubMed ID: 17887888 [TBL] [Abstract][Full Text] [Related]
10. Noninvasive determination of ligament strain with deformable image registration. Phatak NS; Sun Q; Kim SE; Parker DL; Sanders RK; Veress AI; Ellis BJ; Weiss JA Ann Biomed Eng; 2007 Jul; 35(7):1175-87. PubMed ID: 17394084 [TBL] [Abstract][Full Text] [Related]
11. A visco-hyperelastic-damage constitutive model for the analysis of the biomechanical response of the periodontal ligament. Natali AN; Carniel EL; Pavan PG; Sander FG; Dorow C; Geiger M J Biomech Eng; 2008 Jun; 130(3):031004. PubMed ID: 18532853 [TBL] [Abstract][Full Text] [Related]
12. Modeling of microstructural kinematics during simple elongation of central nervous system tissue. Bain AC; Shreiber DI; Meaney DF J Biomech Eng; 2003 Dec; 125(6):798-804. PubMed ID: 14986404 [TBL] [Abstract][Full Text] [Related]
13. In-situ deformation of the aortic valve interstitial cell nucleus under diastolic loading. Huang HY; Liao J; Sacks MS J Biomech Eng; 2007 Dec; 129(6):880-89. PubMed ID: 18067392 [TBL] [Abstract][Full Text] [Related]
14. A rheological network model for the continuum anisotropic and viscoelastic behavior of soft tissue. Bischoff JE; Arruda EM; Grosh K Biomech Model Mechanobiol; 2004 Sep; 3(1):56-65. PubMed ID: 15278837 [TBL] [Abstract][Full Text] [Related]
15. Micromechanical modeling of the epimysium of the skeletal muscles. Gao Y; Waas AM; Faulkner JA; Kostrominova TY; Wineman AS J Biomech; 2008; 41(1):1-10. PubMed ID: 17904147 [TBL] [Abstract][Full Text] [Related]
16. Micromechanics of diffuse axonal injury: influence of axonal orientation and anisotropy. Cloots RJ; van Dommelen JA; Nyberg T; Kleiven S; Geers MG Biomech Model Mechanobiol; 2011 Jun; 10(3):413-22. PubMed ID: 20635116 [TBL] [Abstract][Full Text] [Related]
17. A Three-Dimensional Statistical Volume Element for Histology Informed Micromechanical Modeling of Brain White Matter. Hoursan H; Farahmand F; Ahmadian MT Ann Biomed Eng; 2020 Apr; 48(4):1337-1353. PubMed ID: 31965358 [TBL] [Abstract][Full Text] [Related]
18. Harmonic viscoelastic response of 3D histology-informed white matter model. Wu X; Georgiadis JG; Pelegri AA Mol Cell Neurosci; 2022 Dec; 123():103782. PubMed ID: 36154874 [TBL] [Abstract][Full Text] [Related]
19. Correlations between tissue-level stresses and strains and cellular damage within the guinea pig spinal cord white matter. Galle B; Ouyang H; Shi R; Nauman E J Biomech; 2007; 40(13):3029-33. PubMed ID: 17675041 [TBL] [Abstract][Full Text] [Related]
20. A three-dimensional micromechanical model of brain white matter with histology-informed probabilistic distribution of axonal fibers. Yousefsani SA; Farahmand F; Shamloo A J Mech Behav Biomed Mater; 2018 Dec; 88():288-295. PubMed ID: 30196184 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]