These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
539 related articles for article (PubMed ID: 19627829)
21. A tissue-level anisotropic criterion for brain injury based on microstructural axonal deformation. Cloots RJ; van Dommelen JA; Geers MG J Mech Behav Biomed Mater; 2012 Jan; 5(1):41-52. PubMed ID: 22100078 [TBL] [Abstract][Full Text] [Related]
22. Quantifying the contributions of structure to annulus fibrosus mechanical function using a nonlinear, anisotropic, hyperelastic model. Guerin HL; Elliott DM J Orthop Res; 2007 Apr; 25(4):508-16. PubMed ID: 17149747 [TBL] [Abstract][Full Text] [Related]
23. Prediction of local cellular deformation in bone--influence of microstructure dimensions. Apostolopoulos CA; Deligianni DD J Musculoskelet Neuronal Interact; 2009; 9(2):99-108. PubMed ID: 19516085 [TBL] [Abstract][Full Text] [Related]
24. Role of cell location and morphology in the mechanical environment around meniscal cells. Gupta T; Haut Donahue TL Acta Biomater; 2006 Sep; 2(5):483-92. PubMed ID: 16860617 [TBL] [Abstract][Full Text] [Related]
25. Multilevel finite element modeling for the prediction of local cellular deformation in bone. Deligianni DD; Apostolopoulos CA Biomech Model Mechanobiol; 2008 Apr; 7(2):151-9. PubMed ID: 17431696 [TBL] [Abstract][Full Text] [Related]
26. Parametric finite element analysis of physical stimuli resulting from mechanical stimulation of tissue engineered cartilage. Babalola OM; Bonassar LJ J Biomech Eng; 2009 Jun; 131(6):061014. PubMed ID: 19449968 [TBL] [Abstract][Full Text] [Related]
27. Growth of white matter in the adolescent brain: myelin or axon? Paus T Brain Cogn; 2010 Feb; 72(1):26-35. PubMed ID: 19595493 [TBL] [Abstract][Full Text] [Related]
28. The mechanical behaviour of brain tissue: large strain response and constitutive modelling. Hrapko M; van Dommelen JA; Peters GW; Wismans JS Biorheology; 2006; 43(5):623-36. PubMed ID: 17047281 [TBL] [Abstract][Full Text] [Related]
29. Titanium with aligned, elongated pores for orthopedic tissue engineering applications. Spoerke ED; Murray NG; Li H; Brinson LC; Dunand DC; Stupp SI J Biomed Mater Res A; 2008 Feb; 84(2):402-12. PubMed ID: 17618479 [TBL] [Abstract][Full Text] [Related]
30. Anisotropic constitutive equations and experimental tensile behavior of brain tissue. Velardi F; Fraternali F; Angelillo M Biomech Model Mechanobiol; 2006 Mar; 5(1):53-61. PubMed ID: 16315049 [TBL] [Abstract][Full Text] [Related]
31. A homogenization model of the annulus fibrosus. Yin L; Elliott DM J Biomech; 2005 Aug; 38(8):1674-84. PubMed ID: 15958225 [TBL] [Abstract][Full Text] [Related]
32. Homogenization of heterogeneous brain tissue under quasi-static loading: a visco-hyperelastic model of a 3D RVE. Kazempour M; Baniassadi M; Shahsavari H; Remond Y; Baghani M Biomech Model Mechanobiol; 2019 Aug; 18(4):969-981. PubMed ID: 30762151 [TBL] [Abstract][Full Text] [Related]
33. Inflation of an artery leading to aneurysm formation and rupture. Ren JS Mol Cell Biomech; 2007 Mar; 4(1):55-66. PubMed ID: 17879771 [TBL] [Abstract][Full Text] [Related]
34. Deterministic material-based averaging theory model of collagen gel micromechanics. Chandran PL; Barocas VH J Biomech Eng; 2007 Apr; 129(2):137-47. PubMed ID: 17408318 [TBL] [Abstract][Full Text] [Related]
35. A transition model for finite element simulation of kinematics of central nervous system white matter. Pan Y; Shreiber DI; Pelegri AA IEEE Trans Biomed Eng; 2011 Dec; 58(12):3443-6. PubMed ID: 21803674 [TBL] [Abstract][Full Text] [Related]
36. Non-linear computer simulation of brain deformation. Miller K Biomed Sci Instrum; 2001; 37():179-84. PubMed ID: 11347384 [TBL] [Abstract][Full Text] [Related]
37. An Ogden hyperelastic 3D micromechanical model to depict Poynting effect in brain white matter. Agarwal M; Pelegri AA Heliyon; 2024 Feb; 10(3):e25379. PubMed ID: 38371981 [TBL] [Abstract][Full Text] [Related]
38. Multi-scale simulation of plant tissue deformation using a model for individual cell mechanics. Ghysels P; Samaey G; Tijskens B; Van Liedekerke P; Ramon H; Roose D Phys Biol; 2009 Mar; 6(1):016009. PubMed ID: 19321921 [TBL] [Abstract][Full Text] [Related]
40. Modeling of dynamic fracture and damage in two-dimensional trabecular bone microstructures using the cohesive finite element method. Tomar V J Biomech Eng; 2008 Apr; 130(2):021021. PubMed ID: 18412508 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]