These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 19627851)

  • 1. Effect of fiber shape on mechanical behavior of composite with elastoplastic matrix and SMA reinforcement.
    Zhu Y; Dui G
    J Mech Behav Biomed Mater; 2009 Oct; 2(5):454-9. PubMed ID: 19627851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and thermomechanical behavior of NiTiPt shape memory alloy wires.
    Lin B; Gall K; Maier HJ; Waldron R
    Acta Biomater; 2009 Jan; 5(1):257-67. PubMed ID: 18718825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shape memory and superelastic alloys: the new medical materials with growing demand.
    Van Moorleghem W; Chandrasekaran M; Reynaerts D; Peirs J; Van Brussel H
    Biomed Mater Eng; 1998; 8(2):55-60. PubMed ID: 9830988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase transformation analysis of varied nickel-titanium orthodontic wires.
    Ren CC; Bai YX; Wang HM; Zheng YF; Li S
    Chin Med J (Engl); 2008 Oct; 121(20):2060-4. PubMed ID: 19080276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width.
    Cui J; Chu YS; Famodu OO; Furuya Y; Hattrick-Simpers J; James RD; Ludwig A; Thienhaus S; Wuttig M; Zhang Z; Takeuchi I
    Nat Mater; 2006 Apr; 5(4):286-90. PubMed ID: 16518396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stress-induced phase transformation and pseudo-elastic/pseudo-plastic recovery in intermetallic Ni-Al nanowires.
    Sutrakar VK; Mahapatra DR
    Nanotechnology; 2009 Jul; 20(29):295705. PubMed ID: 19567964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoscale design of Ni-Al shape memory alloys.
    Subramaniyan AK; Sun CT
    Nanotechnology; 2009 Feb; 20(8):085703. PubMed ID: 19417464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 3-D constitutive model for pressure-dependent phase transformation of porous shape memory alloys.
    Ashrafi MJ; Arghavani J; Naghdabadi R; Sohrabpour S
    J Mech Behav Biomed Mater; 2015 Feb; 42():292-310. PubMed ID: 25528691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local strain evolution due to athermal γ→ε martensitic transformation in biomedical CoCrMo alloys.
    Yamanaka K; Mori M; Koizumi Y; Chiba A
    J Mech Behav Biomed Mater; 2014 Apr; 32():52-61. PubMed ID: 24412717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct observation of hierarchical nucleation of martensite and size-dependent superelasticity in shape memory alloys.
    Liu L; Ding X; Li J; Lookman T; Sun J
    Nanoscale; 2014 Feb; 6(4):2067-72. PubMed ID: 24384687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microstructure and tensile properties after thermohydrogen processing of Ti-6 Al-4V.
    Guitar A; Vigna G; Luppo MI
    J Mech Behav Biomed Mater; 2009 Apr; 2(2):156-63. PubMed ID: 19627819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of dislocation densities in cold rolled Al-Mg-Cu-Mn alloys by combination of yield strength data, EBSD and strength models.
    Wang SC; Zhu Z; Starink MJ
    J Microsc; 2005 Feb; 217(Pt 2):174-8. PubMed ID: 15683415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Research on the axis shape of an active catheter.
    Fu Y; Li X; Wang S; Liu H; Liang Z
    Int J Med Robot; 2008 Mar; 4(1):69-76. PubMed ID: 18240336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shape-memory polymers.
    Lendlein A; Kelch S
    Angew Chem Int Ed Engl; 2002 Jun; 41(12):2035-57. PubMed ID: 19746597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of thermomechanical texture on the superelastic response of Nitinol implants.
    Barney MM; Xu D; Robertson SW; Schroeder V; Ritchie RO; Pelton AR; Mehta A
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1431-9. PubMed ID: 21783153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A fiber-ceramic matrix composite material model for osteonal cortical bone fracture micromechanics: solution of arbitrary microcracks interaction.
    Raeisi Najafi A; Arshi AR; Saffar KP; Eslami MR; Fariborz S; Moeinzadeh MH
    J Mech Behav Biomed Mater; 2009 Jul; 2(3):217-23. PubMed ID: 19627826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Titanium-nickel shape memory alloy foams for bone tissue engineering.
    Xiong JY; Li YC; Wang XJ; Hodgson PD; Wen CE
    J Mech Behav Biomed Mater; 2008 Jul; 1(3):269-73. PubMed ID: 19627791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micromechanical modeling of the epimysium of the skeletal muscles.
    Gao Y; Waas AM; Faulkner JA; Kostrominova TY; Wineman AS
    J Biomech; 2008; 41(1):1-10. PubMed ID: 17904147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A micromechanical hyperelastic modeling of brain white matter under large deformation.
    Karami G; Grundman N; Abolfathi N; Naik A; Ziejewski M
    J Mech Behav Biomed Mater; 2009 Jul; 2(3):243-54. PubMed ID: 19627829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclic stretch of the substratum using a shape-memory alloy induces directional migration in Dictyostelium cells.
    Iwadate Y; Yumura S
    Biotechniques; 2009 Sep; 47(3):757-67. PubMed ID: 19852761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.