These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 19627852)
1. Calibration of a constitutive model for the post-yield behaviour of cortical bone. Mullins LP; Bruzzi MS; McHugh PE J Mech Behav Biomed Mater; 2009 Oct; 2(5):460-70. PubMed ID: 19627852 [TBL] [Abstract][Full Text] [Related]
2. The effect of friction on indenter force and pile-up in numerical simulations of bone nanoindentation. Adam CJ; Swain MV J Mech Behav Biomed Mater; 2011 Oct; 4(7):1554-8. PubMed ID: 21783165 [TBL] [Abstract][Full Text] [Related]
3. A finite element model for direction-dependent mechanical response to nanoindentation of cortical bone allowing for anisotropic post-yield behavior of the tissue. Carnelli D; Gastaldi D; Sassi V; Contro R; Ortiz C; Vena P J Biomech Eng; 2010 Aug; 132(8):081008. PubMed ID: 20670057 [TBL] [Abstract][Full Text] [Related]
4. Experimental and numerical characterisation of the elasto-plastic properties of bovine trabecular bone and a trabecular bone analogue. Kelly N; McGarry JP J Mech Behav Biomed Mater; 2012 May; 9():184-97. PubMed ID: 22498295 [TBL] [Abstract][Full Text] [Related]
5. Nanoindentation testing and finite element simulations of cortical bone allowing for anisotropic elastic and inelastic mechanical response. Carnelli D; Lucchini R; Ponzoni M; Contro R; Vena P J Biomech; 2011 Jul; 44(10):1852-8. PubMed ID: 21570077 [TBL] [Abstract][Full Text] [Related]
6. Constitutive modelling of inelastic behaviour of cortical bone. Natali AN; Carniel EL; Pavan PG Med Eng Phys; 2008 Sep; 30(7):905-12. PubMed ID: 18207444 [TBL] [Abstract][Full Text] [Related]
7. A fiber reinforced poroelastic model of nanoindentation of porcine costal cartilage: a combined experimental and finite element approach. Gupta S; Lin J; Ashby P; Pruitt L J Mech Behav Biomed Mater; 2009 Aug; 2(4):326-37; discussion 337-8. PubMed ID: 19627839 [TBL] [Abstract][Full Text] [Related]
8. Influences of spherical tip radius, contact depth, and contact area on nanoindentation properties of bone. Paietta RC; Campbell SE; Ferguson VL J Biomech; 2011 Jan; 44(2):285-90. PubMed ID: 21092970 [TBL] [Abstract][Full Text] [Related]
9. Mechanisms governing the inelastic deformation of cortical bone and application to trabecular bone. Mercer C; He MY; Wang R; Evans AG Acta Biomater; 2006 Jan; 2(1):59-68. PubMed ID: 16701859 [TBL] [Abstract][Full Text] [Related]
10. Constitutive models for impacted morsellised cortico-cancellous bone. Phillips A; Pankaj P; May F; Taylor K; Howie C; Usmani A Biomaterials; 2006 Mar; 27(9):2162-70. PubMed ID: 16309740 [TBL] [Abstract][Full Text] [Related]
11. Interstitial fluid flow in the osteon with spatial gradients of mechanical properties: a finite element study. Rémond A; Naïli S; Lemaire T Biomech Model Mechanobiol; 2008 Dec; 7(6):487-95. PubMed ID: 17990014 [TBL] [Abstract][Full Text] [Related]
12. Implementation of asymmetric yielding in case-specific finite element models improves the prediction of femoral fractures. Derikx LC; Vis R; Meinders T; Verdonschot N; Tanck E Comput Methods Biomech Biomed Engin; 2011 Feb; 14(2):183-93. PubMed ID: 21337224 [TBL] [Abstract][Full Text] [Related]
13. Structural and nanoindentation studies of stem cell-based tissue-engineered bone. Pelled G; Tai K; Sheyn D; Zilberman Y; Kumbar S; Nair LS; Laurencin CT; Gazit D; Ortiz C J Biomech; 2007; 40(2):399-411. PubMed ID: 16524583 [TBL] [Abstract][Full Text] [Related]
14. Comparison of compact bone failure under two different loading rates: experimental and modelling approaches. Pithioux M; Subit D; Chabrand P Med Eng Phys; 2004 Oct; 26(8):647-53. PubMed ID: 15471692 [TBL] [Abstract][Full Text] [Related]
15. A three-dimensional elastic plastic damage constitutive law for bone tissue. Garcia D; Zysset PK; Charlebois M; Curnier A Biomech Model Mechanobiol; 2009 Apr; 8(2):149-65. PubMed ID: 18398628 [TBL] [Abstract][Full Text] [Related]
16. Atomic force microscopy and indentation force measurement of bone. Thurner PJ Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2009; 1(6):624-49. PubMed ID: 20049821 [TBL] [Abstract][Full Text] [Related]
17. Micromechanical properties of human trabecular bone: a hierarchical investigation using nanoindentation. Norman J; Shapter JG; Short K; Smith LJ; Fazzalari NL J Biomed Mater Res A; 2008 Oct; 87(1):196-202. PubMed ID: 18085652 [TBL] [Abstract][Full Text] [Related]
18. Comment on "Nanoindentation and whole-bone bending estimates of material properties in bones from senescence accelerated mouse SAMP6". Malzbender J J Biomech; 2005 May; 38(5):1191-2; author reply 1193. PubMed ID: 15797600 [No Abstract] [Full Text] [Related]
19. Nanoscale heterogeneity promotes energy dissipation in bone. Tai K; Dao M; Suresh S; Palazoglu A; Ortiz C Nat Mater; 2007 Jun; 6(6):454-62. PubMed ID: 17515917 [TBL] [Abstract][Full Text] [Related]
20. Application of the Johnson-Cook plasticity model in the finite element simulations of the nanoindentation of the cortical bone. Remache D; Semaan M; Rossi JM; Pithioux M; Milan JL J Mech Behav Biomed Mater; 2020 Jan; 101():103426. PubMed ID: 31557661 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]