These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 19628400)

  • 1. Synthesis and characterization of modified nucleotides in the 970 hairpin loop of Escherichia coli 16S ribosomal RNA.
    Abeydeera ND; Chow CS
    Bioorg Med Chem; 2009 Aug; 17(16):5887-93. PubMed ID: 19628400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unique structural and stabilizing roles for the individual pseudouridine residues in the 1920 region of Escherichia coli 23S rRNA.
    Meroueh M; Grohar PJ; Qiu J; SantaLucia J; Scaringe SA; Chow CS
    Nucleic Acids Res; 2000 May; 28(10):2075-83. PubMed ID: 10773075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of a 3-methyluridine phosphoramidite to investigate the role of methylation in a ribosomal RNA hairpin.
    Chui HM; Meroueh M; Scaringe SA; Chow CS
    Bioorg Med Chem; 2002 Feb; 10(2):325-32. PubMed ID: 11741781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of helix 69 of Escherichia coli 23S rRNA containing its natural modified nucleosides, m(3)Psi and Psi.
    Chui HM; Desaulniers JP; Scaringe SA; Chow CS
    J Org Chem; 2002 Dec; 67(25):8847-54. PubMed ID: 12467398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The structure of a methylated tetraloop in 16S ribosomal RNA.
    Rife JP; Moore PB
    Structure; 1998 Jun; 6(6):747-56. PubMed ID: 9655826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and function of the conserved 690 hairpin in Escherichia coli 16 S ribosomal RNA: analysis of the stem nucleotides.
    Morosyuk SV; Lee K; SantaLucia J; Cunningham PR
    J Mol Biol; 2000 Jun; 300(1):113-26. PubMed ID: 10864503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the stabilizing effects of modified nucleotides in the bacterial decoding region of 16S ribosomal RNA.
    Mahto SK; Chow CS
    Bioorg Med Chem; 2013 May; 21(10):2720-6. PubMed ID: 23566761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of Escherichia coli ribosomal protein S7 with 16S rRNA.
    Dragon F; Brakier-Gingras L
    Nucleic Acids Res; 1993 Mar; 21(5):1199-203. PubMed ID: 7681943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutational and structural analysis of the RNA binding site for Escherichia coli ribosomal protein S7.
    Dragon F; Payant C; Brakier-Gingras L
    J Mol Biol; 1994 Nov; 244(1):74-85. PubMed ID: 7525976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational and thermodynamic effects of naturally occurring base methylations in a ribosomal RNA hairpin of Bacillus stearothermophilus.
    Heus HA; Formenoy LJ; Van Knippenberg PH
    Eur J Biochem; 1990 Mar; 188(2):275-81. PubMed ID: 1690648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A common motif organizes the structure of multi-helix loops in 16 S and 23 S ribosomal RNAs.
    Leontis NB; Westhof E
    J Mol Biol; 1998 Oct; 283(3):571-83. PubMed ID: 9784367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methylation of the conserved A1518-A1519 in Escherichia coli 16S ribosomal RNA by the ksgA methyltransferase is influenced by methylations around the similarly conserved U1512.G1523 base pair in the 3' terminal hairpin.
    Formenoy LJ; Cunningham PR; Nurse K; Pleij CW; Ofengand J
    Biochimie; 1994; 76(12):1123-8. PubMed ID: 7538324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and role of functionally important motifs in the 970 loop of Escherichia coli 16S ribosomal RNA.
    Saraiya AA; Lamichhane TN; Chow CS; SantaLucia J; Cunningham PR
    J Mol Biol; 2008 Feb; 376(3):645-57. PubMed ID: 18177894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of base change mutations within an Escherichia coli ribosomal RNA leader region on rRNA maturation and ribosome formation.
    Schäferkordt J; Wagner R
    Nucleic Acids Res; 2001 Aug; 29(16):3394-403. PubMed ID: 11504877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of solution conformations and stabilities of modified helix 69 rRNA analogs from bacteria and human.
    Sumita M; Jiang J; SantaLucia J; Chow CS
    Biopolymers; 2012 Feb; 97(2):94-106. PubMed ID: 21858779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamics of the pseudo-knot in helix 18 of 16S ribosomal RNA.
    Wojciechowska M; Dudek M; Trylska J
    Biopolymers; 2018 Apr; 109(4):e23116. PubMed ID: 29570767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. pH-dependent structural changes of helix 69 from Escherichia coli 23S ribosomal RNA.
    Abeysirigunawardena SC; Chow CS
    RNA; 2008 Apr; 14(4):782-92. PubMed ID: 18268024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of transient RNA-RNA interactions important for the facilitated structure formation of bacterial ribosomal 16S RNA.
    Besançon W; Wagner R
    Nucleic Acids Res; 1999 Nov; 27(22):4353-62. PubMed ID: 10536142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional studies of the 900 tetraloop capping helix 27 of 16S ribosomal RNA.
    Bélanger F; Léger M; Saraiya AA; Cunningham PR; Brakier-Gingras L
    J Mol Biol; 2002 Jul; 320(5):979-89. PubMed ID: 12126619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The 16S rRNA binding site of Thermus thermophilus ribosomal protein S15: comparison with Escherichia coli S15, minimum site and structure.
    Serganov AA; Masquida B; Westhof E; Cachia C; Portier C; Garber M; Ehresmann B; Ehresmann C
    RNA; 1996 Nov; 2(11):1124-38. PubMed ID: 8903343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.