BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 19628417)

  • 1. Superoxide interaction with nickel and iron superoxide dismutases.
    Silaghi-Dumitrescu R
    J Mol Graph Model; 2009 Sep; 28(2):156-61. PubMed ID: 19628417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical studies of manganese and iron superoxide dismutases: superoxide binding and superoxide oxidation.
    Abreu IA; Rodriguez JA; Cabelli DE
    J Phys Chem B; 2005 Dec; 109(51):24502-9. PubMed ID: 16375454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo production of active nickel superoxide dismutase from Prochlorococcus marinus MIT9313 is dependent on its cognate peptidase.
    Eitinger T
    J Bacteriol; 2004 Nov; 186(22):7821-5. PubMed ID: 15516600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A square-planar Ni(II) complex with an N2S2 donor set similar to the active centre of nickel-containing superoxide dismutase and its reaction with superoxide.
    Nakane D; Kuwasako SI; Tsuge M; Kubo M; Funahashi Y; Ozawa T; Ogura T; Masuda H
    Chem Commun (Camb); 2010 Mar; 46(12):2142-4. PubMed ID: 20221519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning the redox properties of manganese(II) and its implications to the electrochemistry of manganese and iron superoxide dismutases.
    Sjödin M; Gätjens J; Tabares LC; Thuéry P; Pecoraro VL; Un S
    Inorg Chem; 2008 Apr; 47(7):2897-908. PubMed ID: 18271528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined spectroscopic/computational studies on Fe- and Mn-dependent superoxide dismutases: insights into second-sphere tuning of active site properties.
    Jackson TA; Brunold TC
    Acc Chem Res; 2004 Jul; 37(7):461-70. PubMed ID: 15260508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. S K-edge X-ray absorption spectroscopic investigation of the Ni-containing superoxide dismutase active site: new structural insight into the mechanism.
    Szilagyi RK; Bryngelson PA; Maroney MJ; Hedman B; Hodgson KO; Solomon EI
    J Am Chem Soc; 2004 Mar; 126(10):3018-9. PubMed ID: 15012109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The reaction mechanism of iron and manganese superoxide dismutases studied by theoretical calculations.
    Rulísek L; Jensen KP; Lundgren K; Ryde U
    J Comput Chem; 2006 Sep; 27(12):1398-414. PubMed ID: 16802319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution structure of a functional biomimetic and mechanistic implications for nickel superoxide dismutases.
    Schmidt M; Zahn S; Carella M; Ohlenschläger O; Görlach M; Kothe E; Weston J
    Chembiochem; 2008 Sep; 9(13):2135-46. PubMed ID: 18690655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing variable axial ligation in nickel superoxide dismutase utilizing metallopeptide-based models: insight into the superoxide disproportionation mechanism.
    Neupane KP; Gearty K; Francis A; Shearer J
    J Am Chem Soc; 2007 Nov; 129(47):14605-18. PubMed ID: 17985883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional conversion of nickel-containing metalloproteins via molecular design: from a truncated acetyl-coenzyme A synthase to a nickel superoxide dismutase.
    Liu Y; Wang Q; Wei Y; Lin YW; Li W; Su JH; Wang Z; Tian Y; Huang ZX; Tan X
    Chem Commun (Camb); 2013 Feb; 49(14):1452-4. PubMed ID: 23322089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Harnessing scorpionate ligand equilibria for modeling reduced nickel superoxide dismutase intermediates.
    Ma H; Chattopadhyay S; Petersen JL; Jensen MP
    Inorg Chem; 2008 Sep; 47(18):7966-8. PubMed ID: 18710223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cysteinate protonation and water hydrogen bonding at the active-site of a nickel superoxide dismutase metallopeptide-based mimic: implications for the mechanism of superoxide reduction.
    Shearer J; Peck KL; Schmitt JC; Neupane KP
    J Am Chem Soc; 2014 Nov; 136(45):16009-22. PubMed ID: 25322331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superoxide dismutases: active sites that save, but a protein that kills.
    Miller AF
    Curr Opin Chem Biol; 2004 Apr; 8(2):162-8. PubMed ID: 15062777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reaction mechanism of manganese superoxide dismutase studied by combined quantum and molecular mechanical calculations and multiconfigurational methods.
    Srnec M; Aquilante F; Ryde U; Rulísek L
    J Phys Chem B; 2009 Apr; 113(17):6074-86. PubMed ID: 19344143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New insight into the mode of action of nickel superoxide dismutase by investigating metallopeptide substrate models.
    Tietze D; Breitzke H; Imhof D; Kothe E; Weston J; Buntkowsky G
    Chemistry; 2009; 15(2):517-23. PubMed ID: 19016282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superoxide dismutases of heavy metal resistant streptomycetes.
    Schmidt A; Schmidt A; Haferburg G; Kothe E
    J Basic Microbiol; 2007 Feb; 47(1):56-62. PubMed ID: 17304620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. What is the ultimate fate of superoxide anion in vivo?
    Auchère F; Rusnak F
    J Biol Inorg Chem; 2002 Jun; 7(6):664-7. PubMed ID: 12072975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adiabaticity of the proton-coupled electron-transfer step in the reduction of superoxide effected by nickel-containing superoxide dismutase metallopeptide-based mimics.
    Shearer J; Schmitt JC; Clewett HS
    J Phys Chem B; 2015 Apr; 119(17):5453-61. PubMed ID: 25850940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of substrate analogues and pH on manganese superoxide dismutases.
    Tabares LC; Cortez N; Hiraoka BY; Yamakura F; Un S
    Biochemistry; 2006 Feb; 45(6):1919-29. PubMed ID: 16460038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.