These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 19628691)

  • 1. Biophysical mechanisms of phase contrast in gradient echo MRI.
    He X; Yablonskiy DA
    Proc Natl Acad Sci U S A; 2009 Aug; 106(32):13558-63. PubMed ID: 19628691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biophysical mechanisms of MRI signal frequency contrast in multiple sclerosis.
    Yablonskiy DA; Luo J; Sukstanskii AL; Iyer A; Cross AH
    Proc Natl Acad Sci U S A; 2012 Aug; 109(35):14212-7. PubMed ID: 22891307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lorentzian effects in magnetic susceptibility mapping of anisotropic biological tissues.
    Yablonskiy DA; Sukstanskii AL
    J Magn Reson; 2018 Jul; 292():129-136. PubMed ID: 29730126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generalized Lorentzian Tensor Approach (GLTA) as a biophysical background for quantitative susceptibility mapping.
    Yablonskiy DA; Sukstanskii AL
    Magn Reson Med; 2015 Feb; 73(2):757-64. PubMed ID: 25426775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward in vivo histology: a comparison of quantitative susceptibility mapping (QSM) with magnitude-, phase-, and R2*-imaging at ultra-high magnetic field strength.
    Deistung A; Schäfer A; Schweser F; Biedermann U; Turner R; Reichenbach JR
    Neuroimage; 2013 Jan; 65():299-314. PubMed ID: 23036448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of biological tissue structural anisotropy and anisotropy of magnetic susceptibility on the gradient echo MRI signal phase: theoretical background.
    Yablonskiy DA; Sukstanskii AL
    NMR Biomed; 2017 Apr; 30(4):. PubMed ID: 27862452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the role of neuronal magnetic susceptibility and structure symmetry on gradient echo MR signal formation.
    Sukstanskii AL; Yablonskiy DA
    Magn Reson Med; 2014 Jan; 71(1):345-53. PubMed ID: 23382087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo evaluation of heme and non-heme iron content and neuronal density in human basal ganglia.
    Yablonskiy DA; Wen J; Kothapalli SVVN; Sukstanskii AL
    Neuroimage; 2021 Jul; 235():118012. PubMed ID: 33838265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gradient echo based fiber orientation mapping using R2* and frequency difference measurements.
    Wharton S; Bowtell R
    Neuroimage; 2013 Dec; 83():1011-23. PubMed ID: 23906549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of white matter fibre orientation on MR signal phase and decay.
    Denk C; Hernandez Torres E; MacKay A; Rauscher A
    NMR Biomed; 2011 Apr; 24(3):246-52. PubMed ID: 21404336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reversible, irreversible and effective transverse relaxation rates in normal aging brain at 3T.
    Sedlacik J; Boelmans K; Löbel U; Holst B; Siemonsen S; Fiehler J
    Neuroimage; 2014 Jan; 84():1032-41. PubMed ID: 24004692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating the effect of blood susceptibility on phase contrast in the human brain.
    Petridou N; Wharton SJ; Lotfipour A; Gowland P; Bowtell R
    Neuroimage; 2010 Apr; 50(2):491-8. PubMed ID: 20026280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multispectral quantitative magnetic resonance imaging of brain iron stores: a theoretical perspective.
    Jara H; Sakai O; Mankal P; Irving RP; Norbash AM
    Top Magn Reson Imaging; 2006 Feb; 17(1):19-30. PubMed ID: 17179894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Signal compartments in ultra-high field multi-echo gradient echo MRI reflect underlying tissue microstructure in the brain.
    Kadamangudi S; Reutens D; Sood S; Vegh V
    Neuroimage; 2018 Sep; 178():403-413. PubMed ID: 29852284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: an approach to in vivo brain iron metabolism?
    Schweser F; Deistung A; Lehr BW; Reichenbach JR
    Neuroimage; 2011 Feb; 54(4):2789-807. PubMed ID: 21040794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-field MRI of brain cortical substructure based on signal phase.
    Duyn JH; van Gelderen P; Li TQ; de Zwart JA; Koretsky AP; Fukunaga M
    Proc Natl Acad Sci U S A; 2007 Jul; 104(28):11796-801. PubMed ID: 17586684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single scan quantitative gradient recalled echo MRI for evaluation of tissue damage in lesions and normal appearing gray and white matter in multiple sclerosis.
    Xiang B; Wen J; Cross AH; Yablonskiy DA
    J Magn Reson Imaging; 2019 Feb; 49(2):487-498. PubMed ID: 30155934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Susceptibility weighted imaging (SWI).
    Haacke EM; Xu Y; Cheng YC; Reichenbach JR
    Magn Reson Med; 2004 Sep; 52(3):612-8. PubMed ID: 15334582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the origin of the MR image phase contrast: an in vivo MR microscopy study of the rat brain at 14.1 T.
    Marques JP; Maddage R; Mlynarik V; Gruetter R
    Neuroimage; 2009 Jun; 46(2):345-52. PubMed ID: 19254768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of iron and protein contents from rat brain subcellular fractions to MR phase imaging.
    Leutritz T; Hilfert L; Busse U; Smalla KH; Speck O; Zhong K
    Magn Reson Med; 2017 May; 77(5):2028-2039. PubMed ID: 27271468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.