These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 19628792)

  • 1. Dynamical mechanism for subcellular alternans in cardiac myocytes.
    Gaeta SA; Bub G; Abbott GW; Christini DJ
    Circ Res; 2009 Aug; 105(4):335-42. PubMed ID: 19628792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feedback-control induced pattern formation in cardiac myocytes: a mathematical modeling study.
    Gaeta SA; Krogh-Madsen T; Christini DJ
    J Theor Biol; 2010 Oct; 266(3):408-18. PubMed ID: 20620154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hysteresis effect implicates calcium cycling as a mechanism of repolarization alternans.
    Walker ML; Wan X; Kirsch GE; Rosenbaum DS
    Circulation; 2003 Nov; 108(21):2704-9. PubMed ID: 14581412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular correlates of repolarization alternans in cardiac myocytes.
    Wan X; Laurita KR; Pruvot EJ; Rosenbaum DS
    J Mol Cell Cardiol; 2005 Sep; 39(3):419-28. PubMed ID: 16026799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatially discordant alternans in cardiomyocyte monolayers.
    de Diego C; Pai RK; Dave AS; Lynch A; Thu M; Chen F; Xie LH; Weiss JN; Valderrábano M
    Am J Physiol Heart Circ Physiol; 2008 Mar; 294(3):H1417-25. PubMed ID: 18223190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of spatially discordant alternans due to fluctuations and diffusion of calcium.
    Sato D; Bers DM; Shiferaw Y
    PLoS One; 2013; 8(12):e85365. PubMed ID: 24392005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Voltage and calcium dynamics both underlie cellular alternans in cardiac myocytes.
    Groenendaal W; Ortega FA; Krogh-Madsen T; Christini DJ
    Biophys J; 2014 May; 106(10):2222-32. PubMed ID: 24853751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms underlying the formation and dynamics of subcellular calcium alternans in the intact rat heart.
    Aistrup GL; Shiferaw Y; Kapur S; Kadish AH; Wasserstrom JA
    Circ Res; 2009 Mar; 104(5):639-49. PubMed ID: 19150887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual regulation by subcellular calcium heterogeneity and heart rate variability on cardiac electromechanical dynamics.
    Phadumdeo VM; Weinberg SH
    Chaos; 2020 Sep; 30(9):093129. PubMed ID: 33003911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Action potential shortening rescues atrial calcium alternans.
    Kanaporis G; Kalik ZM; Blatter LA
    J Physiol; 2019 Feb; 597(3):723-740. PubMed ID: 30412286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatiotemporal intracellular calcium dynamics during cardiac alternans.
    Restrepo JG; Karma A
    Chaos; 2009 Sep; 19(3):037115. PubMed ID: 19792040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oscillation in cycle length induces transient discordant and steady-state concordant alternans in the heart.
    Weinberg SH; Tung L
    PLoS One; 2012; 7(7):e40477. PubMed ID: 22792346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular and subcellular alternans in the canine left ventricle.
    Cordeiro JM; Malone JE; Di Diego JM; Scornik FS; Aistrup GL; Antzelevitch C; Wasserstrom JA
    Am J Physiol Heart Circ Physiol; 2007 Dec; 293(6):H3506-16. PubMed ID: 17906109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stochastic pacing reveals the propensity to cardiac action potential alternans and uncovers its underlying dynamics.
    Prudat Y; Madhvani RV; Angelini M; Borgstom NP; Garfinkel A; Karagueuzian HS; Weiss JN; de Lange E; Olcese R; Kucera JP
    J Physiol; 2016 May; 594(9):2537-53. PubMed ID: 26563830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heart failure enhances susceptibility to arrhythmogenic cardiac alternans.
    Wilson LD; Jeyaraj D; Wan X; Hoeker GS; Said TH; Gittinger M; Laurita KR; Rosenbaum DS
    Heart Rhythm; 2009 Feb; 6(2):251-9. PubMed ID: 19187920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subcellular Ca2+ alternans represents a novel mechanism for the generation of arrhythmogenic Ca2+ waves in cat atrial myocytes.
    Kockskämper J; Blatter LA
    J Physiol; 2002 Nov; 545(1):65-79. PubMed ID: 12433950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium alternans in cardiac myocytes: order from disorder.
    Qu Z; Nivala M; Weiss JN
    J Mol Cell Cardiol; 2013 May; 58():100-9. PubMed ID: 23104004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of Ca2+ and electrical alternans in cardiac myocytes: role of CAMKII and repolarizing currents.
    Livshitz LM; Rudy Y
    Am J Physiol Heart Circ Physiol; 2007 Jun; 292(6):H2854-66. PubMed ID: 17277017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cardiac alternans induced by fibroblast-myocyte coupling: mechanistic insights from computational models.
    Xie Y; Garfinkel A; Weiss JN; Qu Z
    Am J Physiol Heart Circ Physiol; 2009 Aug; 297(2):H775-84. PubMed ID: 19482965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanisms of calcium cycling and action potential dynamics in cardiac alternans.
    Kanaporis G; Blatter LA
    Circ Res; 2015 Feb; 116(5):846-56. PubMed ID: 25532796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.