These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 19628816)
1. Strong coupling between single-electron tunneling and nanomechanical motion. Steele GA; Hüttel AK; Witkamp B; Poot M; Meerwaldt HB; Kouwenhoven LP; van der Zant HS Science; 2009 Aug; 325(5944):1103-7. PubMed ID: 19628816 [TBL] [Abstract][Full Text] [Related]
2. Coupling mechanics to charge transport in carbon nanotube mechanical resonators. Lassagne B; Tarakanov Y; Kinaret J; Garcia-Sanchez D; Bachtold A Science; 2009 Aug; 325(5944):1107-10. PubMed ID: 19628818 [TBL] [Abstract][Full Text] [Related]
3. Scanned probe imaging of single-electron charge states in nanotube quantum dots. Woodside MT; McEuen PL Science; 2002 May; 296(5570):1098-101. PubMed ID: 12004123 [TBL] [Abstract][Full Text] [Related]
4. Carbon nanotubes as ultrahigh quality factor mechanical resonators. Hüttel AK; Steele GA; Witkamp B; Poot M; Kouwenhoven LP; van der Zant HS Nano Lett; 2009 Jul; 9(7):2547-52. PubMed ID: 19492820 [TBL] [Abstract][Full Text] [Related]
5. Parametric strong mode-coupling in carbon nanotube mechanical resonators. Li SX; Zhu D; Wang XH; Wang JT; Deng GW; Li HO; Cao G; Xiao M; Guo GC; Jiang KL; Dai XC; Guo GP Nanoscale; 2016 Aug; 8(31):14809-13. PubMed ID: 27447924 [TBL] [Abstract][Full Text] [Related]
6. Coupling graphene nanomechanical motion to a single-electron transistor. Luo G; Zhang ZZ; Deng GW; Li HO; Cao G; Xiao M; Guo GC; Guo GP Nanoscale; 2017 May; 9(17):5608-5614. PubMed ID: 28422197 [TBL] [Abstract][Full Text] [Related]
7. Force-frequency effect of thickness mode langasite resonators. Zhang H; Turner JA; Yang J; Kosinski JA Ultrasonics; 2010 Apr; 50(4-5):479-90. PubMed ID: 19942246 [TBL] [Abstract][Full Text] [Related]
8. Fabry - Perot interference in a nanotube electron waveguide. Liang W; Bockrath M; Bozovic D; Hafner JH; Tinkham M; Park H Nature; 2001 Jun; 411(6838):665-9. PubMed ID: 11395762 [TBL] [Abstract][Full Text] [Related]
9. Ground-state cooling of a carbon nanomechanical resonator by spin-polarized current. Stadler P; Belzig W; Rastelli G Phys Rev Lett; 2014 Jul; 113(4):047201. PubMed ID: 25105648 [TBL] [Abstract][Full Text] [Related]
10. Detecting mechanical resonance in carbon nanotubes via inter-tube electrical transport measurements. Singh JP; Teki R; Ci L; Ajayan P; Koratkar N J Nanosci Nanotechnol; 2008 Jan; 8(1):436-8. PubMed ID: 18468098 [TBL] [Abstract][Full Text] [Related]
11. Spin-orbit-induced strong coupling of a single spin to a nanomechanical resonator. Pályi A; Struck PR; Rudner M; Flensberg K; Burkard G Phys Rev Lett; 2012 May; 108(20):206811. PubMed ID: 23003173 [TBL] [Abstract][Full Text] [Related]
12. High-frequency micromechanical resonators from aluminium-carbon nanotube nanolaminates. Bak JH; Kim YD; Hong SS; Lee BY; Lee SR; Jang JH; Kim M; Char K; Hong S; Park YD Nat Mater; 2008 Jun; 7(6):459-63. PubMed ID: 18425133 [TBL] [Abstract][Full Text] [Related]
14. Observation of decoherence in a carbon nanotube mechanical resonator. Schneider BH; Singh V; Venstra WJ; Meerwaldt HB; Steele GA Nat Commun; 2014 Dec; 5():5819. PubMed ID: 25524228 [TBL] [Abstract][Full Text] [Related]
15. Nanometre-scale displacement sensing using a single electron transistor. Knobel RG; Cleland AN Nature; 2003 Jul; 424(6946):291-3. PubMed ID: 12867975 [TBL] [Abstract][Full Text] [Related]