These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 19628816)

  • 41. Parametric amplification and self-oscillation in a nanotube mechanical resonator.
    Eichler A; Chaste J; Moser J; Bachtold A
    Nano Lett; 2011 Jul; 11(7):2699-703. PubMed ID: 21615135
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mass Detection in Viscous Fluid Utilizing Vibrating Micro- and Nanomechanical Mass Sensors under Applied Axial Tensile Force.
    Stachiv I; Fang TH; Jeng YR
    Sensors (Basel); 2015 Aug; 15(8):19351-68. PubMed ID: 26287190
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A coherent nanomechanical oscillator driven by single-electron tunnelling.
    Wen Y; Ares N; Schupp FJ; Pei T; Briggs GAD; Laird EA
    Nat Phys; 2020 Jan; 16(1):75-82. PubMed ID: 31915459
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Simultaneously measured signals in scanning probe microscopy with a needle sensor: frequency shift and tunneling current.
    Morawski I; Voigtländer B
    Rev Sci Instrum; 2010 Mar; 81(3):033703. PubMed ID: 20370181
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cooling of nanomechanical resonators by thermally activated single-electron transport.
    Santandrea F; Gorelik LY; Shekhter RI; Jonson M
    Phys Rev Lett; 2011 May; 106(18):186803. PubMed ID: 21635118
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dynamics and dissipation induced by single-electron tunneling in carbon nanotube nanoelectromechanical systems.
    Ganzhorn M; Wernsdorfer W
    Phys Rev Lett; 2012 Apr; 108(17):175502. PubMed ID: 22680883
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Quantum state readout of individual quantum dots by electrostatic force detection.
    Miyahara Y; Roy-Gobeil A; Grutter P
    Nanotechnology; 2017 Feb; 28(6):064001. PubMed ID: 28059061
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nanomechanical resonators based on group IV element monolayers.
    He JD; Sun JS; Jiang JW
    Nanotechnology; 2018 Apr; 29(16):165503. PubMed ID: 29485105
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nonlinear frequency shifts in acoustical resonators with varying cross sections.
    Hamilton MF; Ilinskii YA; Zabolotskaya EA
    J Acoust Soc Am; 2009 Mar; 125(3):1310-9. PubMed ID: 19275288
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mass detection with a nonlinear nanomechanical resonator.
    Buks E; Yurke B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046619. PubMed ID: 17155204
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Time-domain control of ultrahigh-frequency nanomechanical systems.
    Liu N; Giesen F; Belov M; Losby J; Moroz J; Fraser AE; McKinnon G; Clement TJ; Sauer V; Hiebert WK; Freeman MR
    Nat Nanotechnol; 2008 Dec; 3(12):715-9. PubMed ID: 19057589
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dispersive and dissipative coupling in a micromechanical resonator embedded with a nanomechanical resonator.
    Mahboob I; Perrissin N; Nishiguchi K; Hatanaka D; Okazaki Y; Fujiwara A; Yamaguchi H
    Nano Lett; 2015 Apr; 15(4):2312-7. PubMed ID: 25751406
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Suspended Silicon Single-Hole Transistor as an Extremely Scaled Gigahertz Nanoelectromechanical Beam Resonator.
    Zhang ZZ; Hu Q; Song XX; Ying Y; Li HO; Zhang Z; Guo GP
    Adv Mater; 2020 Dec; 32(52):e2005625. PubMed ID: 33191506
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Model-independent quantitative measurement of nanomechanical oscillator vibrations using electron-microscope linescans.
    Wang H; Fenton JC; Chiatti O; Warburton PA
    Rev Sci Instrum; 2013 Jul; 84(7):075002. PubMed ID: 23902094
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ultrasensitive nanomechanical mass sensor using hybrid opto-electromechanical systems.
    Jiang C; Cui Y; Zhu KD
    Opt Express; 2014 Jun; 22(11):13773-83. PubMed ID: 24921569
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Internal motions of a quasiparticle governing its ultrafast nonlinear response.
    Gaal P; Kuehn W; Reimann K; Woerner M; Elsaesser T; Hey R
    Nature; 2007 Dec; 450(7173):1210-3. PubMed ID: 18097404
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modeling and measurement of geometrically nonlinear damping in a microcantilever-nanotube system.
    Jeong B; Cho H; Yu MF; Vakakis AF; McFarland DM; Bergman LA
    ACS Nano; 2013 Oct; 7(10):8547-53. PubMed ID: 24010552
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Tunable nanoresonators constructed from telescoping nanotubes.
    Jensen K; Girit C; Mickelson W; Zettl A
    Phys Rev Lett; 2006 Jun; 96(21):215503. PubMed ID: 16803247
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Tunable micro- and nanomechanical resonators.
    Zhang WM; Hu KM; Peng ZK; Meng G
    Sensors (Basel); 2015 Oct; 15(10):26478-566. PubMed ID: 26501294
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Energy Dissipation in Fluid Coupled Nanoresonators: The Effect of Phonon-Fluid Coupling.
    De S; Aluru NR
    ACS Nano; 2018 Jan; 12(1):368-377. PubMed ID: 29286628
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.