BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

650 related articles for article (PubMed ID: 19629035)

  • 21. A mutant allele of MRE11 found in mismatch repair-deficient tumor cells suppresses the cellular response to DNA replication fork stress in a dominant negative manner.
    Wen Q; Scorah J; Phear G; Rodgers G; Rodgers S; Meuth M
    Mol Biol Cell; 2008 Apr; 19(4):1693-705. PubMed ID: 18256278
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interplay of replication checkpoints and repair proteins at stalled replication forks.
    Branzei D; Foiani M
    DNA Repair (Amst); 2007 Jul; 6(7):994-1003. PubMed ID: 17382606
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Poly(ADP-ribose) binding to Chk1 at stalled replication forks is required for S-phase checkpoint activation.
    Min W; Bruhn C; Grigaravicius P; Zhou ZW; Li F; Krüger A; Siddeek B; Greulich KO; Popp O; Meisezahl C; Calkhoven CF; Bürkle A; Xu X; Wang ZQ
    Nat Commun; 2013; 4():2993. PubMed ID: 24356582
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthetic lethality of cohesins with PARPs and replication fork mediators.
    McLellan JL; O'Neil NJ; Barrett I; Ferree E; van Pel DM; Ushey K; Sipahimalani P; Bryan J; Rose AM; Hieter P
    PLoS Genet; 2012; 8(3):e1002574. PubMed ID: 22412391
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stalled replication forks within heterochromatin require ATRX for protection.
    Huh MS; Ivanochko D; Hashem LE; Curtin M; Delorme M; Goodall E; Yan K; Picketts DJ
    Cell Death Dis; 2016 May; 7(5):e2220. PubMed ID: 27171262
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differential regulation of homologous recombination at DNA breaks and replication forks by the Mrc1 branch of the S-phase checkpoint.
    Alabert C; Bianco JN; Pasero P
    EMBO J; 2009 Apr; 28(8):1131-41. PubMed ID: 19322196
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Replisome assembly and the direct restart of stalled replication forks.
    Heller RC; Marians KJ
    Nat Rev Mol Cell Biol; 2006 Dec; 7(12):932-43. PubMed ID: 17139333
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Importance of poly(ADP-ribose) polymerases in the regulation of DNA-dependent processes.
    Petermann E; Keil C; Oei SL
    Cell Mol Life Sci; 2005 Apr; 62(7-8):731-8. PubMed ID: 15868398
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Limiting homologous recombination at stalled replication forks is essential for cell viability: DNA2 to the rescue.
    Appanah R; Jones D; Falquet B; Rass U
    Curr Genet; 2020 Dec; 66(6):1085-1092. PubMed ID: 32909097
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exploring the roles of Mus81-Eme1/Mms4 at perturbed replication forks.
    Osman F; Whitby MC
    DNA Repair (Amst); 2007 Jul; 6(7):1004-17. PubMed ID: 17409028
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The end-joining factor Ku acts in the end-resection of double strand break-free arrested replication forks.
    Teixeira-Silva A; Ait Saada A; Hardy J; Iraqui I; Nocente MC; Fréon K; Lambert SAE
    Nat Commun; 2017 Dec; 8(1):1982. PubMed ID: 29215009
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DNA2 drives processing and restart of reversed replication forks in human cells.
    Thangavel S; Berti M; Levikova M; Pinto C; Gomathinayagam S; Vujanovic M; Zellweger R; Moore H; Lee EH; Hendrickson EA; Cejka P; Stewart S; Lopes M; Vindigni A
    J Cell Biol; 2015 Mar; 208(5):545-62. PubMed ID: 25733713
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Degradation of Mrc1 promotes recombination-mediated restart of stalled replication forks.
    Chaudhury I; Koepp DM
    Nucleic Acids Res; 2017 Mar; 45(5):2558-2570. PubMed ID: 27956499
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gross chromosomal rearrangements and elevated recombination at an inducible site-specific replication fork barrier.
    Lambert S; Watson A; Sheedy DM; Martin B; Carr AM
    Cell; 2005 Jun; 121(5):689-702. PubMed ID: 15935756
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PARP-1 ensures regulation of replication fork progression by homologous recombination on damaged DNA.
    Sugimura K; Takebayashi S; Taguchi H; Takeda S; Okumura K
    J Cell Biol; 2008 Dec; 183(7):1203-12. PubMed ID: 19103807
    [TBL] [Abstract][Full Text] [Related]  

  • 36. SDE2 integrates into the TIMELESS-TIPIN complex to protect stalled replication forks.
    Rageul J; Park JJ; Zeng PP; Lee EA; Yang J; Hwang S; Lo N; Weinheimer AS; Schärer OD; Yeo JE; Kim H
    Nat Commun; 2020 Oct; 11(1):5495. PubMed ID: 33127907
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deletion of BRCA2 exon 27 causes defects in response to both stalled and collapsed replication forks.
    Kim TM; Son MY; Dodds S; Hu L; Hasty P
    Mutat Res; 2014; 766-767():66-72. PubMed ID: 25847274
    [TBL] [Abstract][Full Text] [Related]  

  • 38. PARP1-dependent kinetics of recruitment of MRE11 and NBS1 proteins to multiple DNA damage sites.
    Haince JF; McDonald D; Rodrigue A; Déry U; Masson JY; Hendzel MJ; Poirier GG
    J Biol Chem; 2008 Jan; 283(2):1197-208. PubMed ID: 18025084
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ino80 chromatin remodeling complex promotes recovery of stalled replication forks.
    Shimada K; Oma Y; Schleker T; Kugou K; Ohta K; Harata M; Gasser SM
    Curr Biol; 2008 Apr; 18(8):566-75. PubMed ID: 18406137
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multiple pathways process stalled replication forks.
    Michel B; Grompone G; Florès MJ; Bidnenko V
    Proc Natl Acad Sci U S A; 2004 Aug; 101(35):12783-8. PubMed ID: 15328417
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.