These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 19629157)

  • 1. Identification of a topological characteristic responsible for the biological robustness of regulatory networks.
    Wu Y; Zhang X; Yu J; Ouyang Q
    PLoS Comput Biol; 2009 Jul; 5(7):e1000442. PubMed ID: 19629157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A reverse engineering approach to optimize experiments for the construction of biological regulatory networks.
    Zhang X; Shao B; Wu Y; Qi O
    PLoS One; 2013; 8(9):e75931. PubMed ID: 24069453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissecting the fission yeast regulatory network reveals phase-specific control elements of its cell cycle.
    Bushel PR; Heard NA; Gutman R; Liu L; Peddada SD; Pyne S
    BMC Syst Biol; 2009 Sep; 3():93. PubMed ID: 19758441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling gene and protein regulatory networks with answer set programming.
    Fayruzov T; Janssen J; Vermeir D; Cornelis C; De Cock M
    Int J Data Min Bioinform; 2011; 5(2):209-29. PubMed ID: 21544955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Timing robustness in the budding and fission yeast cell cycles.
    Mangla K; Dill DL; Horowitz MA
    PLoS One; 2010 Feb; 5(2):e8906. PubMed ID: 20126540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New scaling relation for information transfer in biological networks.
    Kim H; Davies P; Walker SI
    J R Soc Interface; 2015 Dec; 12(113):20150944. PubMed ID: 26701883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamical and topological robustness of the mammalian cell cycle network: a reverse engineering approach.
    Ruz GA; Goles E; Montalva M; Fogel GB
    Biosystems; 2014 Jan; 115():23-32. PubMed ID: 24212100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neutral space analysis for a Boolean network model of the fission yeast cell cycle network.
    Ruz GA; Timmermann T; Barrera J; Goles E
    Biol Res; 2014 Nov; 47(1):64. PubMed ID: 25723815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binary threshold networks as a natural null model for biological networks.
    Rybarsch M; Bornholdt S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):026114. PubMed ID: 23005832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deconstruction and dynamical robustness of regulatory networks: application to the yeast cell cycle networks.
    Goles E; Montalva M; Ruz GA
    Bull Math Biol; 2013 Jun; 75(6):939-66. PubMed ID: 23188157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modular logical modelling of the budding yeast cell cycle.
    Fauré A; Naldi A; Lopez F; Chaouiya C; Ciliberto A; Thieffry D
    Mol Biosyst; 2009 Dec; 5(12):1787-96. PubMed ID: 19763337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Knowledge-fused differential dependency network models for detecting significant rewiring in biological networks.
    Tian Y; Zhang B; Hoffman EP; Clarke R; Zhang Z; Shih IeM; Xuan J; Herrington DM; Wang Y
    BMC Syst Biol; 2014 Jul; 8():87. PubMed ID: 25055984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphisms of reaction networks that couple structure to function.
    Cardelli L
    BMC Syst Biol; 2014 Aug; 8():84. PubMed ID: 25128194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Boolean network model predicts cell cycle sequence of fission yeast.
    Davidich MI; Bornholdt S
    PLoS One; 2008 Feb; 3(2):e1672. PubMed ID: 18301750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Minimum network constraint on reverse engineering to develop biological regulatory networks.
    Shao B; Wu J; Tian B; Ouyang Q
    J Theor Biol; 2015 Sep; 380():9-15. PubMed ID: 25981630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of functional modules using network topology and high-throughput data.
    Ulitsky I; Shamir R
    BMC Syst Biol; 2007 Jan; 1():8. PubMed ID: 17408515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quasi-Newton Stochastic Optimization Algorithm for Parameter Estimation of a Stochastic Model of the Budding Yeast Cell Cycle.
    Chen M; Amos BD; Watson LT; Tyson JJ; Cao Y; Shaffer CA; Trosset MW; Oguz C; Kakoti G
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(1):301-311. PubMed ID: 29990127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Refining network reconstruction based on functional reliability.
    Zhang Y; Ouyang Q; Geng Z
    J Theor Biol; 2014 Jul; 353():170-8. PubMed ID: 24631047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA replication and damage checkpoints and meiotic cell cycle controls in the fission and budding yeasts.
    Murakami H; Nurse P
    Biochem J; 2000 Jul; 349(Pt 1):1-12. PubMed ID: 10861204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell cycle molecules and mechanisms of the budding and fission yeasts.
    Humphrey T; Pearce A
    Methods Mol Biol; 2005; 296():3-29. PubMed ID: 15576924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.