These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 19629158)

  • 1. Harvesting candidate genes responsible for serious adverse drug reactions from a chemical-protein interactome.
    Yang L; Chen J; He L
    PLoS Comput Biol; 2009 Jul; 5(7):e1000441. PubMed ID: 19629158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying unexpected therapeutic targets via chemical-protein interactome.
    Yang L; Chen J; Shi L; Hudock MP; Wang K; He L
    PLoS One; 2010 Mar; 5(3):e9568. PubMed ID: 20221449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SePreSA: a server for the prediction of populations susceptible to serious adverse drug reactions implementing the methodology of a chemical-protein interactome.
    Yang L; Luo H; Chen J; Xing Q; He L
    Nucleic Acids Res; 2009 Jul; 37(Web Server issue):W406-12. PubMed ID: 19417066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical-protein interactome and its application in off-target identification.
    Yang L; Wang KJ; Wang LS; Jegga AG; Qin SY; He G; Chen J; Xiao Y; He L
    Interdiscip Sci; 2011 Mar; 3(1):22-30. PubMed ID: 21369884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DPDR-CPI, a server that predicts Drug Positioning and Drug Repositioning via Chemical-Protein Interactome.
    Luo H; Zhang P; Cao XH; Du D; Ye H; Huang H; Li C; Qin S; Wan C; Shi L; He L; Yang L
    Sci Rep; 2016 Nov; 6():35996. PubMed ID: 27805045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A CitationRank algorithm inheriting Google technology designed to highlight genes responsible for serious adverse drug reaction.
    Yang L; Xu L; He L
    Bioinformatics; 2009 Sep; 25(17):2244-50. PubMed ID: 19528085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring off-targets and off-systems for adverse drug reactions via chemical-protein interactome--clozapine-induced agranulocytosis as a case study.
    Yang L; Wang K; Chen J; Jegga AG; Luo H; Shi L; Wan C; Guo X; Qin S; He G; Feng G; He L
    PLoS Comput Biol; 2011 Mar; 7(3):e1002016. PubMed ID: 21483481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combinations of protein-chemical complex structures reveal new targets for established drugs.
    Kalinina OV; Wichmann O; Apic G; Russell RB
    PLoS Comput Biol; 2011 May; 7(5):e1002043. PubMed ID: 21573205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Data-driven methods to discover molecular determinants of serious adverse drug events.
    Chiang AP; Butte AJ
    Clin Pharmacol Ther; 2009 Mar; 85(3):259-68. PubMed ID: 19177064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DRAR-CPI: a server for identifying drug repositioning potential and adverse drug reactions via the chemical-protein interactome.
    Luo H; Chen J; Shi L; Mikailov M; Zhu H; Wang K; He L; Yang L
    Nucleic Acids Res; 2011 Jul; 39(Web Server issue):W492-8. PubMed ID: 21558322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inferring protein domains associated with drug side effects based on drug-target interaction network.
    Iwata H; Mizutani S; Tabei Y; Kotera M; Goto S; Yamanishi Y
    BMC Syst Biol; 2013; 7 Suppl 6(Suppl 6):S18. PubMed ID: 24565527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative study of disease genes and drug targets in the human protein interactome.
    Sun J; Zhu K; Zheng W; Xu H
    BMC Bioinformatics; 2015; 16 Suppl 5(Suppl 5):S1. PubMed ID: 25861037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DDI-CPI, a server that predicts drug-drug interactions through implementing the chemical-protein interactome.
    Luo H; Zhang P; Huang H; Huang J; Kao E; Shi L; He L; Yang L
    Nucleic Acids Res; 2014 Jul; 42(Web Server issue):W46-52. PubMed ID: 24875476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-scale detection of drug off-targets: hypotheses for drug repurposing and understanding side-effects.
    Chartier M; Morency LP; Zylber MI; Najmanovich RJ
    BMC Pharmacol Toxicol; 2017 Apr; 18(1):18. PubMed ID: 28449705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracting chemical-protein interactions from literature using sentence structure analysis and feature engineering.
    Lung PY; He Z; Zhao T; Yu D; Zhang J
    Database (Oxford); 2019 Jan; 2019():. PubMed ID: 30624652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A disease-drug-phenotype matrix inferred by walking on a functional domain network.
    Fang H; Gough J
    Mol Biosyst; 2013 Jul; 9(7):1686-96. PubMed ID: 23462907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. IntSide: a web server for the chemical and biological examination of drug side effects.
    Juan-Blanco T; Duran-Frigola M; Aloy P
    Bioinformatics; 2015 Feb; 31(4):612-3. PubMed ID: 25380960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HLA Association with Drug-Induced Adverse Reactions.
    Fan WL; Shiao MS; Hui RC; Su SC; Wang CW; Chang YC; Chung WH
    J Immunol Res; 2017; 2017():3186328. PubMed ID: 29333460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of chemical-protein interactions network with weighted network-based inference method.
    Cheng F; Zhou Y; Li W; Liu G; Tang Y
    PLoS One; 2012; 7(7):e41064. PubMed ID: 22815915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BindML/BindML+: Detecting Protein-Protein Interaction Interface Propensity from Amino Acid Substitution Patterns.
    Wei Q; La D; Kihara D
    Methods Mol Biol; 2017; 1529():279-289. PubMed ID: 27914057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.