These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 19629805)

  • 1. Evaluation of a two cursor control device for development of a powered laparoscopic surgical tool.
    Herring SR; Hallbeck MS
    Ergonomics; 2009 Aug; 52(8):891-906. PubMed ID: 19629805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of four cursor control devices during a target acquisition task for laparoscopic tool control.
    Herring SR; Trejo AE; Hallbeck MS
    Appl Ergon; 2010 Jan; 41(1):47-57. PubMed ID: 19426963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of input device and motion type on a cursor-positioning task.
    Yau YJ; Hwang SL; Chao CJ
    Percept Mot Skills; 2008 Feb; 106(1):76-90. PubMed ID: 18459358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ; Rosipal R; Matthews B
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Notebook input devices put to the age test: the usability of trackpoint and touchpad for middle-aged adults.
    Armbrüster C; Sutter C; Ziefle M
    Ergonomics; 2007 Mar; 50(3):426-45. PubMed ID: 17536778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic cursor gain and tactual feedback in the capture of cursor movements.
    Keyson DV
    Ergonomics; 1997 Dec; 40(12):1287-98. PubMed ID: 9416013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Forward/up directional incompatibilities during cursor placement within graphical user interfaces.
    Phillips JG; Triggs TJ; Meehan JW
    Ergonomics; 2005 May; 48(6):722-35. PubMed ID: 16087505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control strategies when intercepting slowly moving targets.
    Dubrowski A; Carnahan H
    J Mot Behav; 2001 Mar; 33(1):37-48. PubMed ID: 11265056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of the performance of trackpoint and touchpads with varied right and left buttons function locations.
    Wu CF; Lai CC; Liu YK
    Appl Ergon; 2013 Mar; 44(2):312-20. PubMed ID: 23036721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cortical control of a prosthetic arm for self-feeding.
    Velliste M; Perel S; Spalding MC; Whitford AS; Schwartz AB
    Nature; 2008 Jun; 453(7198):1098-101. PubMed ID: 18509337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Equipment control in a sterile environment using the Gyromouse and a new interface, the user interface (UI) wand.
    Stefels CN; Kneissner J; Aarnink RG; Kaufholz P; Grimbergen CA; Dankelman J
    Minim Invasive Ther Allied Technol; 2007; 16(3):163-72. PubMed ID: 17573621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Practice and carryover effects when using small interaction devices.
    Sutter C; Oehl M; Armbrüster C
    Appl Ergon; 2011 Mar; 42(3):437-44. PubMed ID: 20934683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Vocal Joystick: evaluation of voice-based cursor control techniques for assistive technology.
    Harada S; Landay JA; Malkin J; Li X; Bilmes JA
    Disabil Rehabil Assist Technol; 2008 Jan; 3(1):22-34. PubMed ID: 18416516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of imperfect automation and individual differences on concurrent performance of military and robotics tasks in a simulated multitasking environment.
    Chen JY; Terrence PI
    Ergonomics; 2009 Aug; 52(8):907-20. PubMed ID: 19629806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contributions of online visual feedback to the learning and generalization of novel finger coordination patterns.
    Liu X; Scheidt RA
    J Neurophysiol; 2008 May; 99(5):2546-57. PubMed ID: 18353914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interacting with notebook input devices: an analysis of motor performance and users' expertise.
    Sutter C; Ziefle M
    Hum Factors; 2005; 47(1):169-87. PubMed ID: 15960095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of platform motion and target orientation on the performance of trackball manipulation.
    Yau YJ; Chao CJ; Feng WY; Hwang SL
    Ergonomics; 2011 Aug; 54(8):745-54. PubMed ID: 21846312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of electrosurgical hand controls integrated into a laparoscopic grasper.
    Brown-Clerk B; Rousek JB; Lowndes BR; Eikhout SM; Balogh BJ; Hallbeck MS
    Minim Invasive Ther Allied Technol; 2011 Dec; 20(6):321-8. PubMed ID: 21395460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remapping hand movements in a novel geometrical environment.
    Mosier KM; Scheidt RA; Acosta S; Mussa-Ivaldi FA
    J Neurophysiol; 2005 Dec; 94(6):4362-72. PubMed ID: 16148276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for continuous processing of visual information in a manual video-aiming task.
    Proteau L; Roujoula A; Messier J
    J Mot Behav; 2009 May; 41(3):219-31. PubMed ID: 19366655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.