These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1071 related articles for article (PubMed ID: 19630037)
21. Assessment approach for evaluating high abundance protein depletion methods for cerebrospinal fluid (CSF) proteomic analysis. Shores KS; Knapp DR J Proteome Res; 2007 Sep; 6(9):3739-51. PubMed ID: 17696521 [TBL] [Abstract][Full Text] [Related]
22. Isotope-coded N-terminal sulfonation of peptides allows quantitative proteomic analysis with increased de novo peptide sequencing capability. Lee YH; Han H; Chang SB; Lee SW Rapid Commun Mass Spectrom; 2004; 18(24):3019-27. PubMed ID: 15536630 [TBL] [Abstract][Full Text] [Related]
23. Enhanced sensitivity in proteomics experiments using FAIMS coupled with a hybrid linear ion trap/Orbitrap mass spectrometer. Saba J; Bonneil E; Pomiès C; Eng K; Thibault P J Proteome Res; 2009 Jul; 8(7):3355-66. PubMed ID: 19469569 [TBL] [Abstract][Full Text] [Related]
24. Two-dimensional reversed-phase x ion-pair reversed-phase HPLC: an alternative approach to high-resolution peptide separation for shotgun proteome analysis. Delmotte N; Lasaosa M; Tholey A; Heinzle E; Huber CG J Proteome Res; 2007 Nov; 6(11):4363-73. PubMed ID: 17924683 [TBL] [Abstract][Full Text] [Related]
25. Composite sequence proteomic analysis of protein biomarkers of Campylobacter coli, C. lari and C. concisus for bacterial identification. Fagerquist CK; Yee E; Miller WG Analyst; 2007 Oct; 132(10):1010-23. PubMed ID: 17893805 [TBL] [Abstract][Full Text] [Related]
26. Comparative evaluation of mass spectrometry platforms used in large-scale proteomics investigations. Elias JE; Haas W; Faherty BK; Gygi SP Nat Methods; 2005 Sep; 2(9):667-75. PubMed ID: 16118637 [TBL] [Abstract][Full Text] [Related]
27. Differential recovery of peptides from sample tubes and the reproducibility of quantitative proteomic data. Bark SJ; Hook V J Proteome Res; 2007 Nov; 6(11):4511-6. PubMed ID: 17850064 [TBL] [Abstract][Full Text] [Related]
28. Multiple products monitoring as a robust approach for peptide quantification. Baek JH; Kim H; Shin B; Yu MH J Proteome Res; 2009 Jul; 8(7):3625-32. PubMed ID: 19505066 [TBL] [Abstract][Full Text] [Related]
29. Protein labeling by iTRAQ: a new tool for quantitative mass spectrometry in proteome research. Wiese S; Reidegeld KA; Meyer HE; Warscheid B Proteomics; 2007 Feb; 7(3):340-50. PubMed ID: 17177251 [TBL] [Abstract][Full Text] [Related]
30. High-yield peptide-extraction method for the discovery of subnanomolar biomarkers from small serum samples. Kawashima Y; Fukutomi T; Tomonaga T; Takahashi H; Nomura F; Maeda T; Kodera Y J Proteome Res; 2010 Apr; 9(4):1694-705. PubMed ID: 20184378 [TBL] [Abstract][Full Text] [Related]
31. A study of reproducibility of guanidination-dimethylation labeling and liquid chromatography matrix-assisted laser desorption ionization mass spectrometry for relative proteome quantification. Ji C; Zhang N; Damaraju S; Damaraju VL; Carpenter P; Cass CE; Li L Anal Chim Acta; 2007 Mar; 585(2):219-26. PubMed ID: 17386668 [TBL] [Abstract][Full Text] [Related]
32. Tissue proteomics of the low-molecular weight proteome using an integrated cLC-ESI-QTOFMS approach. Alvarez MT; Shah DJ; Thulin CD; Graves SW Proteomics; 2013 May; 13(9):1400-11. PubMed ID: 23456981 [TBL] [Abstract][Full Text] [Related]
33. Global quantitative proteomic profiling through 18O-labeling in combination with MS/MS spectra analysis. White CA; Oey N; Emili A J Proteome Res; 2009 Jul; 8(7):3653-65. PubMed ID: 19400582 [TBL] [Abstract][Full Text] [Related]
34. Proteomic identification of salivary biomarkers of type-2 diabetes. Rao PV; Reddy AP; Lu X; Dasari S; Krishnaprasad A; Biggs E; Roberts CT; Nagalla SR J Proteome Res; 2009 Jan; 8(1):239-45. PubMed ID: 19118452 [TBL] [Abstract][Full Text] [Related]
35. The human plasma proteome: analysis of Chinese serum using shotgun strategy. He P; He HZ; Dai J; Wang Y; Sheng QH; Zhou LP; Zhang ZS; Sun YL; Liu F; Wang K; Zhang JS; Wang HX; Song ZM; Zhang HR; Zeng R; Zhao X Proteomics; 2005 Aug; 5(13):3442-53. PubMed ID: 16047309 [TBL] [Abstract][Full Text] [Related]
36. Towards defining the urinary proteome using liquid chromatography-tandem mass spectrometry. I. Profiling an unfractionated tryptic digest. Spahr CS; Davis MT; McGinley MD; Robinson JH; Bures EJ; Beierle J; Mort J; Courchesne PL; Chen K; Wahl RC; Yu W; Luethy R; Patterson SD Proteomics; 2001 Jan; 1(1):93-107. PubMed ID: 11680902 [TBL] [Abstract][Full Text] [Related]
37. A new analytical material-enhanced laser desorption ionization (MELDI) based approach for the determination of low-mass serum constituents using fullerene derivatives for selective enrichment. Vallant RM; Szabo Z; Trojer L; Najam-ul-Haq M; Rainer M; Huck CW; Bakry R; Bonn GK J Proteome Res; 2007 Jan; 6(1):44-53. PubMed ID: 17203947 [TBL] [Abstract][Full Text] [Related]
38. Application of the ETD/PTR reactions in top-down proteomics as a faster alternative to bottom-up nanoLC-MS/MS protein identification. Drabik A; Bodzon-Kulakowska A; Suder P J Mass Spectrom; 2012 Oct; 47(10):1347-52. PubMed ID: 23019167 [TBL] [Abstract][Full Text] [Related]
39. Mass spectrometric identification of serum peptides employing derivatized poly(glycidyl methacrylate/divinyl benzene) particles and mu-HPLC. Rainer M; Najam-ul-Haq M; Bakry R; Huck CW; Bonn GK J Proteome Res; 2007 Jan; 6(1):382-6. PubMed ID: 17203982 [TBL] [Abstract][Full Text] [Related]